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Abstract—Deep neural networks achieve state-of-the-art per-
formance on many image segmentation tasks. However, the
nature of the learned representations used by these networks
is unclear. Biological brains solve this task very efficiently and
seemingly effortlessly. Neurophysiological recordings have begun
to elucidate the underlying neural mechanisms of image segmen-
tation. In particular, it has been proposed that border ownership
selectivity (BOS) is the first step in this process in the brain. BOS
is a property of an orientation selective neuron to differentially
respond to an object contour dependent on the location of the
foreground object (figure). We explored whether deep neural
networks use representations close to those of biological brains,
in particular whether they explicitly represent BOS. We therefore
developed a suite of in-silico experiments to test for BOS, similar
to experiments that have been used to probe primate BOS. We
tested two deep neural networks trained for scene segmentation
tasks (DOC [1] and Mask R-CNN [2]), as well as one network
trained for object recognition (ResNet-50 [3]). Units in ResNet-
50 predominantly showed contrast tuning. Units in Mask R-CNN
responded weakly to the test stimuli. In the DOC network, we
found that units in earlier layers of the network showed stronger
contrast tuning, while units in deeper layers of the network
showed increasing BOS. In primate brains, contrast tuning seems
wide-spread in extrastriate areas while BOS is most common
in intermediate area V2 where the prevalence of BOS neurons
exceeds that of earlier (V1) and later (V4) areas. We also found
that the DOC network, which was trained on natural images,
did not generalize well to the simple stimuli typically used in
experiments. This differs from findings in biological brains where
responses to simple stimuli are stronger than to complex natural
scenes. Our methods are general and can also be applied to other
deep neural networks and tasks.

I. INTRODUCTION

Deep learning enables machines to learn representations
useful for a variety of real-world tasks in an end-to-end man-
ner, with applications to object recognition, object detection,
and scene segmentation [4], [5]. Here, we focus on the problem
of instance segmentation, where each separate object instance
within an image has to be segmented on a pixel-wise basis.
For this specific problem, various datasets (e.g. COCO [6] and
Cityscapes [7]) and models, e.g. Deep Occlusion Estimation
(DOC) [1] and Mask R-CNN [2] have been proposed. As
these approaches are mostly task-driven, researchers typically

optimize model performance with respect to an error metric
(e.g. mean average precision of the intersection over union on
the instance segmentation task). Much less attention is usually
paid to the learned representations that result from training on
a specific task, although a related line of research on model
interpretability has provided some useful insights [8], [9].

From the neuroscience perspective, the brain is able to
solve visual tasks very efficiently, without the need for the
large numbers of labeled examples typically used to train
deep neural networks (for a discussion on the connections
between neuroscience and deep learning, see [10]). For the
specific problem of figure-ground segmentation, Zhou et
al [11] showed that individual neurons in primate visual
cortex implement border ownership coding in their firing rates.
Depending on which side an object is located relative to
its receptive field, a border ownership selective neuron will
respond with different firing rates. The difference in firing rates
for when an object is located on the neuron’s preferred side
(which has a higher firing rate) versus when it is located on its
non-preferred side (with a lower firing rate) can then be used
to infer figure-ground relationships. Border ownership coding
has been observed for a large battery of stimuli, including
both simple stimuli [11]–[15] and complex natural scenes [16],
[17]. Several mechanisms have been proposed to explain this
phenomenon, based on local (intra-areal) processing [18],
feed-forward architectures [19], [20], or the interaction of
bottom-up and top-down processes [21].

Here, we propose to use deep neural networks trained on
scene segmentation tasks and study their learned representa-
tions in a manner similar to conventional neurophysiological
experiments by “recording” from units within the network
(similar to [22]). Our in-silico experiments allow us to directly
compare the representations learned by neural networks and
those which have been observed in the brain.

II. METHODS

A. Networks

We performed in-silico experiments on two networks that
have been pretrained to perform figure-ground segmentation



in different ways [1], [2]. One of these networks (DOC,
ref. [1]) performs both contour detection and figure-ground
segmentation using a two-stream architecture. The model was
trained on natural images with manually annotated object
contour and figure-ground labels. For a given image, the model
produces two outputs– a contour map and a figure-ground
orientation map, which are then fused together to produce a
pixel-wise segmentation of objects within the image. For a
more in-depth overview of the model, we refer the reader to the
original paper [1]. The source code for this project is publicly
available at: https://github.com/pengwangucla/DOC. We first
converted the original model from Caffe to Tensorflow using
the Microsoft MMdnn toolbox. Our subsequent analyses were
performed using the Tensorflow framework.

The second network (Mask R-CNN, ref [2]) has several
parts that collectively perform instance segmentation. Dif-
ferent sub-networks propose object bounding boxes, label
bounded objects by object category, and propose masks over
pixels that correspond to each object. We focused on the
mask sub-network. We used the pretrained Caffe2 model
provided by [2]. As a baseline, we also examined a stan-
dard object-recognition network, ResNet-50 [3]. We used
the pre-trained implementation that is packaged with Keras.
Our experiment and analysis code can be found online at:
https://github.com/brianhhu/DOC-tf.

B. Stimuli

The input to the network consisted of stimuli that were
similar to those used in neurophysiological studies in ex-
trastriate cortex of awake behaving monkeys. The simplest
stimulus used to characterize BOS responses in experimental
neurophysiology is a square foreground object in front of
a uniform background, see ref [11], Fig. 2. It was found
that responses are essentially invariant when the size of
the stimulus is changed, ibid Figs 5, 9. Several variations
of the square stimulus were used, e.g. overlapping squares
(ibid, Fig. 3), a square composed of “Cornsweet contours,”
ref [12] Fig. 1, or of non-connected segments, ref [12] Fig.
3. Other geometrical shapes were used to demonstrate the
general nature of the phenomenon, including a “C-shape,”
ref [11] Fig. 2 and variations of it, ref [21] Fig. 9. The
standard stimulus against which others are typically compared
in many of these situations, as well as in complex natural
scenes [17] is, however, the square which is therefore used in
our computational experiments.

We studied the response properties of units across layers and
feature maps of the networks. We always “recorded” from the
center unit within a given feature map, and we centered and
rotated the edge of the square stimulus in order to reliably
drive each unit. We adapted the color and orientation of the
square stimulus to the preferred color and orientation of the
unit under study using the same methods outlined in the
original experiments [11]. Briefly, we first used a set of bar
stimuli centered within the image and varied the length, width,
color, and orientation of the bar in order to find the preferred
stimulus of the unit under study.

The standard square test involves four stimulus conditions,
including all combinations of two binary factors: side-of-figure
of the square, and contrast of the figure edge (examples shown
in Fig. 1, left four panels). Except where noted, we used
squares that were 1/4 the width of the full stimulus image
(we used square images 400 pixels wide for the DOC and
Mask R-CNN networks, and 256 pixels wide for ResNet).
To determine whether a unit had stronger contrast tuning or
border ownership tuning, we calculated a “contrast score” and
a “border ownership score,” respectively. Given the responses
RA, RB , RC , and RD to stimuli A, B, C, and D in the square
test (see [11] and Fig. 1), the contrast score was

SC = |(RA +RB)/2− (RC +RD)/2|/R̄ ∗ 100, (1)

where R̄ is the mean of RA, RB , RC , and RD. This score
ranged from 0 to 200. Similarly, the border ownership score
was

SB = |(RA +RC)/2− (RB +RD)/2|/R̄ ∗ 100. (2)

These scores are loosely related to the reliability scores that
were used to characterize response strength in [11].

Contrast tuning is a local measure that captures whether
units code for the contrast polarity of a figure edge, in-
dependent of where the square stimulus is located. On the
other hand, border ownership coding is a global measure that
captures whether units code for side-of-figure, independent of
the contrast polarity of the figure and background. We quantify
the degree of contrast or border ownership tuning using scatter
plots of these two measures for units across the feature maps
within a given layer of the network. Points falling on the unity
line indicate equal contrast and border ownership tuning, while
points below/above the unity line indicate preference for either
contrast or border ownership tuning.

Additionally, we found optimal stimuli for certain units,
using standard methods in neural network analysis. Starting
with a random image, we used backpropagation to find the
gradient of a given unit’s activation, with respect to the input
image, and used gradient ascent to find an image that strongly
activated the unit [8], [9]. High-frequency noisy gradients are
suppressed using Laplacian pyramid gradient normalization
[23]. Optimal stimuli for two example neurons are shown in
Figure 8.

III. RESULTS

We focus mainly on the Deep Occlusion Estimation (DOC)
network, which had the strongest border ownership coding.

Figure 1 shows an example set of square stimuli for the
standard square test, along with corresponding outputs of
the orientation and boundary detection streams of the DOC
network. The network failed to mark the boundaries of the
squares used in the standard test, in contrast with its good
performance with natural images, e.g. Figure 2.

Figure 3 shows distributions of contrast preference and
border preference scores, defined respectively in eqs 1 and 2,
for every third ReLU layer in the DOC network’s orienta-
tion stream. There were strong contrast-selective responses



Fig. 1. Example output of the pretrained DOC network on the standard square test. The left panels show the original input images, the center panels show
the outputs of the figure-ground orientation stream of the network, and the right panels show the outputs of the contour detection stream of the network. Each
group of four figures shows the different side-of-figure and contrast conditions that were tested (i.e. left and right differ by contrast, up and down differ by
side-of-figure). We “recorded” from units located in the exact center of the image. Importantly, the local image content within the receptive field of these
units was the same between side-of-figure conditions (compare A and B or C and D).

Fig. 2. Example output of the pre-trained DOC network. The left panel shows the original input image, the center panel shows the output of the contour
detection stream of the network, and the right panel shows the output of the figure-ground orientation stream of the network. The example image is from the
Berkeley Segmentation Data Set [24].

throughout the network. Border ownership scores were much
smaller than contrast scores in earlier layers, but comparable
to contrast scores in later layers. The last layer (relu5 3)
contained a number of units with minimal contrast sensitivity
and strong border selectivity (lower-right corner of scatter-
plot in Figure 3). Overall, the distributions of contrast and
border ownership responses were similar in this layer. This
qualitatively resembles the pattern of responses to similar
stimuli in V2 [11]. Because V2 responses are variable across
repeated trials, Zhou et al. [11] characterized coding of
contrast and ownership using an ANOVA. To compare more
directly with these results, we added a Poisson model of spike-
rate variability to the relu5 3 responses, and performed the
same analysis. We found that 43% of units had statistically
significant representations of both contrast and ownership
(α = 0.01), 18% significantly encoded contrast only, and 15%
significantly encoded ownership only. These proportions are
similar to those in V2 (44%, 22%, and 15%, respectively)
[11]. However, the model did not show size invariance at any
level which is observed in the biological data. As can be seen

in Figure 4, earlier layers have a strong preference for the
standard square (100×100 pixels) while later layers prefer the
larger square (150 × 150). Figure 5 summarizes the relative
strength of contrast and border coding throughout the network.

Figure 6 plots the relative strength of contrast and border
tuning in two other networks: ResNet and Mask R-CNN. There
were strong contrast responses and weak border responses
throughout the ResNet. The vast majority of units in the Mask
R-CNN network had weak responses to the square stimuli.

In addition to square figures, [11] also experimented with
C-shaped figures, and stimuli with two overlapping figures.
Each of these groups of stimuli had the same local contrast,
at the centre, as the group of square stimuli. [11] found
that somewhat less than half of cells with significant border
preference in response to square stimuli also had a significant
preference in response to the more complex stimuli. We tested
responses of layer relu5 3 of the DOC network’s orientation
stream to these additional stimuli. Figure 7 shows border-
preference scores with C-shaped (left) and overlapping-figures
(right). Scores in response to the more complex stimuli (verti-
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Fig. 3. Comparison of contrast and border ownership tuning in every third layer of the figure-ground orientation stream of the DOC network. The border
preference score is defined in eq 2 and contrast reference score in eq 1. The first convolutional layer (relu1 1, left) largely shows contrast tuning. Later layers
show progressively stronger border ownership tuning. The final convolutional layer (relu5 3) shows a mix of both contrast and border ownership responses.
We find similar results in the contour-detection stream of the DOC network (not shown).
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Fig. 4. Lack of size invariance of border ownership tuning in the figure-ground orientation stream of the DOC network. Plotted is the border ownership
score (eq 2) of the large vs that of the standard square. Earlier layers (relu1 1, relu2 2, and relu3 3) show preference for the standard square size (100x100
pixels). Later layers show preference for a larger square size (150x150 pixels). We find similar results in the contour-detection stream of the DOC network
(not shown).

cal axes) are plotted against those in response to square stimuli
(horizontal axes) for the same units. In contrast with [11],
border preferences were at least as strong with the complex
stimuli as with the square stimuli. The same was true for layer
relu5 3 of the boundary stream (not shown).

Among cells with significant border preferences in response
to C shapes and overlapping figures, [11] found that nearly all
such cells preferred complex stimuli on the same side (e.g. left
or right) as they preferred square stimuli. We tested whether
units with strong border preferences (scores >50) with both
squares and another stimulus group preferred the same side
for each kind of stimulus. Similar to [11], 16/18 such units in
boundary stream layer relu5 3 preferred C-shape and square
stimuli on the same side, and 7/8 preferred overlapping and
square stimuli on the same side. In contrast, side preferences
were shared across stimuli less often in orientation-stream
layer relu5 3. Only 39/58 units had matching side preferences
for square and C-shaped stimuli, and only 17/36 had matching
side preferences for square and overlapping stimuli.

To better understand the mechanism of strong border own-
ership responses in later layers of the DOC network, we found
optimal stimuli for some of these units. We focused on units in
layer relu5 3 of the orientation stream, and selected units with
a strong border or contrast bias, specifically |SC−SB | > 150.
Figure 8 shows one example of optimal stimuli for a unit
with a strong border response, and for another one with a

strong contrast response. Importantly, these units’ receptive
fields are larger than the square stimuli, allowing them to
differentiate stimuli based on the surrounding region. To see
whether the optimal stimuli predicted the border and contrast
responses, we performed a simple approximation of the square
experiment. We modelled each unit’s response to a square
stimulus Isq as max(0,

∑
i,j,k I

sq
i,j,kI

opt
i,j,k), where Iopt is the

optimal stimulus (a variant without the Laplacian pyramid
method), and the subscript i, j, k refers to the (i, j)th pixel in
the kth channel. Two of five units with strong border responses
also had substantial border responses in this simplified model,
compared to zero of seven units with strong contrast responses.
This suggests that similarity of various square stimuli to these
units’ optimal stimuli may partly account for the results,
despite the many nonlinearities in the network.

IV. CONCLUSION

We developed a set of tools that allowed us to perform an
in-silico version of neurophysiological experiments testing for
border ownership coding in deep neural networks, which al-
lowed for direct comparison of neural responses and responses
from units within the network. Our results show that while
deep neural networks learn representations that enable them to
solve difficult visual tasks such as instance segmentation, these
representations can differ greatly from those that have been
experimentally observed in the brain. We found that although
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Fig. 7. Border-preference scores of layer relu5 3 of the DOC network’s
orientation stream, with the C-shape and overlapping-figures stimuli used
in [11] (top panels). The bottom panels show border-preference scores of
responses to these stimuli (vertical axes) against the border-preference scores
of responses of same units to the standard square stimuli (horizontal axes).

higher layers showed stronger border ownership tuning, corre-
sponding to a global image property related to figure-ground
segmentation, a large number of neurons in these layers were
still sensitive to contrast, a largely local image cue. We also
found that contour and figure-ground responses were weaker
to the artificial stimuli we used, compared to the natural
stimuli that the model was trained on, suggesting a possible
generalization gap. We note that in biological networks, the
opposite was found: the BOS signal for the standard square
was typically several times larger than that for foreground
objects in complex natural scenes [17]. It seems quite possible
that the cues used for solving the segmentation task, as well
as the mechanisms by which they are exploited and their
internal representations are fundamentally different between
the two systems. This is because their architectures differ in
a principled way: while most convolutional neural networks,
including all three networks which we study as an example
here, have a feedforward architecture, biological brains are
highly recurrent. Given the primate visual system’s general
tendency of increasing receptive field sizes in more central
compared to more peripheral brain areas, feedback from higher
areas provides access to a large context which is likely used
to solve the segmentation problem. This context information
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Fig. 8. Optimal stimuli for example units with strong border (left) and contrast (right) responses. Both units are from layer relu5 3 of the DOC network’s
orientation stream. The black outlines indicate the positions and orientations of the square stimuli.

is not available in early layers of a feedforward network
where receptive fields are by design small. Strictly feedforward
networks therefore may need to employ different strategies to
solve the problem, or at least come as close to a solution
as possible. Future work will include the study of additional
networks with different architectures, and the design of new
network architectures better constrained by the figure-ground
representations observed in biology.
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