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Abstract—Overt visual attention is traditionally studied by
recording eye movements under head-fixed viewing conditions.
However, during natural visual exploration, both head and eye
movements can be used to redirect gaze to new points of interest.
In order to better understand the role of head movements in this
process, we recorded head movements while subjects explored a
set of complex images from five different categories in a virtual
reality environment. We found image-category specific differences
in head movements, as quantified by the number and duration of
head “fixations” (periods of maintained head orientation) as well
as the amplitude of head movements. We compared head fixations
with several other behavioral measures of attentional selection
and with a computational model of bottom-up saliency, using
the same set of complex scenes in all experiments. Results show
significant positive correlation between head fixations and all
other measures of attentional deployment, suggesting that head
movements are a readily measurable indicator of overt selective
attention at a spatial scale exceeding that of eye movements.

I. INTRODUCTION

Selective attention is one of the crucial mechanisms of
perception and cognition. It allows organisms to direct their
necessarily limited information processing capabilities to the
most relevant sensory inputs gathered in a complex world.
An important distinction is between covert attention which is
by definition a process that controls information processing
resources entirely within the organism, in the absence of
immediately observable changes in its appearance, and overt
attention. The latter is frequently taken as a synonym for eye
movements which, indeed, indicate with high likelihood where
attention of the organism is directed at.

Although covert and overt attention can be dissociated [1],
it is also true that they are frequently co-localized or at least
tightly correlated in space and time [2], [3], even when eye
movements are involuntary [4]. Indeed, the most common
method of evaluating models of covert selective attention is to
use this close relationship between eye movements and covert
attention. This method, introduced by Parkhurst et al [5],
allows for comparison of predictions of computational models
of covert attention, like the classical saliency map model [6],
with easily observable eye movements. This approach has been
used in a large number of studies, for static and for dynamic
scenes (video), and for both human and non-human primates;
for a review, see [7].

High visual acuity is available only in foveal vision, i.e. in a
few square degrees out of the over 30,000 in the human visual
field (= 210° horizontal by 150° vertical, ref. [8]) surrounding

the observer. While information certainly can be gathered from
other parts of the visual field (the term covert attention would
be meaningless otherwise), there is no doubt that in many
natural situations the information from the foveal area enjoys
preferential status. If aligning this area with those parts of
the visual input that the organism has determined need closer
inspection requires a small change in the center of gaze, this
change is naturally made by an eye movement. If information
needs to be gathered from a part of the environment that is
not visible with the current orientation of the head, the head
needs to be turned. If the angle for the head movement is too
large, the torso also needs to be turned or moved. Head- and
eye-movements are known to be well-integrated in human and
non-human primate observers [9], [10]. We therefore consider
them as operations serving the same general purpose, but at
differents parts of the spectrum of spatial scale: Fast, efficient
oculomotor actions direct overt attention to areas within easy
reach (see below for a more quantitative statement) of the
current center of gaze, while larger scale shifts of attention
require movement of the head or even the torso.

In the present study, we leverage recent advances in
consumer-grade virtual reality (VR) technology to create a
novel experimental setup that allows us to record head move-
ments while subjects view natural images in a VR setting. VR
environments can render realistic natural images, and give the
experimenter tight control over all details of the scene. This
is critical for being able to reproduce the experimental setting
between subjects and studies. Crucially, the VR environment
allows us to use a set of complex visual scenes (adapted to
this paradigm as described below) for which we know where
human observers direct there attention, using several different
experimental methods. Previous work using the same stimuli
has shown where observers fixate in these scenes [5], [11],
which parts of these scenes they select as being “interesting”
with a mouse click [12] and which parts are predicted to be
salient by the standard saliency map model [6]. If, as we
postulate, head movements are a manifestation of the same
underlying attentional selection process at a larger spatial
scale, we predict that they should be positively correlated with
some or all of these measures.

II. METHODS

The experimental methods are only summarized here be-
cause they were described previously [13]. We refer the reader
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Fig. 1. Head movement data for one subject on a sample image. (A) Head movement trajectory overlaid on the image. Red lines show the movement trajectory
and yellow circles indicate the locations of head “fixations.” (B) The x-position, y-position, and velocity of the head are shown for the example movement
trajectory (top, middle, and bottom traces, respectively). The red line in the velocity trace shows the threshold used to classify movements as head “fixations”.

to that publication for details.

All experimental procedures were approved by the In-
stitutional Review Board of Johns Hopkins University. 27
subjects (15 male; mean age = 20.1 years, SD = 2.7), all
neurologically normal and with vision normal or corrected
to normal, participated in the experiment. Each subject was
fitted with a pair of Google Cardboard VR glasses which
was used to display the VR environment and collect head
movement data with a custom-designed script. Each subject
viewed in the VR environment a total of 70 different scenes
(13 images from each of five image categories, with five repeat
images, one from each category). All images had a resolution
of 640 x 480 pixels. Four of the categories (buildings, fractals,
“old” home interiors and landscapes) were introduced by
Parkhurst et al [5] and we added an additional category
(“new” home interiors) for reasons explained below. Image
categories were chosen to provide subjects with a variety of
scenes that are ecologically important. The scenes also differ in
semantic content (e.g. fractals are devoid of meaning), which
likely leads to differences in the allocation of top-down visual
attention. We chose these images because previous studies
have extensively characterized eye movements (fixations) that
humans make in these scenes [5], [11]. Furthermore, a large
study with hundreds of subjects determined which portions
of these scenes were considered subjectively interesting [12].
The fifth, additional set of (“new”) home interior images
was collected from the internet and used in our experiment
because the original home interior images were digitized from
photographs and, as a consequence, were often perceived as
blurry when rendered in the VR environment.

Subjects were seated on a stationary (non-swiveling) chair
in a quiet room to minimize the influence of body movements
and noise disturbances. Each image presentation began with
a l-second, small view of the image to give subjects an
overview (gist) of the whole image. This allowed participants
to (consciously or subconsciously) decide which portions of
the whole image needed to be scrutinized in greater detail

once the full-resolution image became available. This then
immediately zoomed into a large-scale, immersive image.
The small image subtended approximately 30 degrees in the
horizontal direction and 23 degrees in the vertical direction,
while the full-size image subtended approximately 116 degrees
in the horizontal direction and 100 degrees in the vertical
direction. Subjects viewed the images through the field of
view of the VR glasses, a square aperture with side length 74
degrees. As a result, the full size image was larger than the
visible portion of the VR environment by more than a factor
of two in surface area, and the head had to be moved to see
parts of the image in the periphery. Participants were instructed
to visually explore the images and were told that they would
be asked about image contents. No explicit mention of head
movements was made. After each image viewing, subjects
were asked to describe the scene concisely in one sentence.
Viewing time was set to 10 seconds for each image, with
unlimited time for image description. Each experiment lasted
approximately one hour.

Head movements were divided into “head fixations” (re-
ferred to below sometimes simply as “fixations;” context will
indicate whether head or eye fixations are meant) and inter-
fixations by using a velocity threshold of 25 degrees/second.
Although this threshold value is somewhat arbitrary, other
studies have reported using similar thresholds between 15-
25 degrees/second [9], [10], [14], [15]. Movements below
the threshold were classified as fixations, and the centroid
of recorded movements during fixation periods was used
as the fixation center. We analyzed the head movements in
terms of the following metrics: number of fixations, fixation
duration, and amplitude of inter-fixation movements. We tested
for significant differences in head movements across image
categories using ANOVA, and we corrected for multiple
comparisons using the Bonferroni correction.

In order to create smoothed maps of the head movements
for comparison with eye fixations [5] and interest points [12],
we recorded the location of each head fixation center and con-



volved these binary maps with a Gaussian with o = 27 pixels.
Before convolution, both eye and head fixation locations were
weighted by the duration of the fixation. Interest maps were
computed from the first interest points only, see ref [12]
for details. To compute the marginal fixational density maps
(FDMs) used to compare head movements with eye move-
ments and interest points, we first averaged all smoothed head
movement maps from one image category (across all subjects
and images), while subtracting out the average smoothed head
movement maps from all other categories. This controls for
spatial biases common across categories, including the center
bias. In each image category’s marginal FDM, positive values
represent regions fixated more than the grand average across
categories, and negative values represent regions fixated less
then the grand average across categories. More details about
this approach can be found in ref [16].

All data and code associated with this paper can be found
online at: https://github.com/brianhhu/VR_HeadMovements.

III. RESULTS

A. Previous results: Head movement kinematics in a VR
environment

We have described the basic kinematics of head movements
in VR environments, using the identical stimuli used here,
in a previous study [13]. Figure 1 shows an example head
movement trajectory for one subject, including the raw head
movement data that was used to complete our analysis. We
found that, similar to eye fixations, head movements follow
approximately a “main sequence,” with both peak velocity and
the duration of “head fixations” (defined in analogy to eye
fixations) being proportional to their duration. Furthermore,
most head movements occur along the cardinal directions, with
a strong preponderance of horizontal over vertical movements.

B. Comparison with other correlates of visual attention

Jeck et al [17] pointed out that traditional correlation
measures between maps like those considered here lead to
a systematic underestimation of map similarity because of
the finite data size. They describe a resampling technique
that corrects for this error. Applying their methods on maps
of eye fixations [5], interest point selections [12], and a
saliency map model [6], we found that head movements were
significantly correlated with each of the other measures of
visual attention. As we propose that head movements are
a coarse measure of visual attention, we chose a relatively
large bin size of 128 x 128 pixels when comparing the
maps, which effectively turns each map into 6 x 8 resolution.
Head movements were correlated with fixations, » = 0.59,
significantly above the null hypothesis (p = 6.85 x 1071%).
Head movements were also correlated with interest point
selections, r = 0.69, allowing us to reject the null hypothesis
of absence of correlations between these two measures of
attention (p = 3.86 X 1079). Finally, head movements were
correlated with computed saliency maps, » = 0.40, again
rejecting the null hypothesis (p = 3.13 x 1073). Our results
are summarized in Figure 2.

C. Marginal Fixation Density Maps

In the next step, we examined differences between image
categories using the marginal FDMs (see Methods). We ap-
plied this approach to the eye movement data, interest point
selections, head movement data, and saliency maps computed
using low-level image features computed using a classical
bottom-up model of visual attention [6] (Figure 3). In these
maps, shown in Figure 3, warmer colors indicate areas in the
image category that were either fixated (eye and head data)
or selected (interest point data) more often compared to the
other image categories, or where the computed saliency for
this category exceeded that for others. Although the marginal
FDMs for the eye fixations and head fixations differ, there are
also some similarities. For example, for the building images,
subjects tended to fixate more on the lower half of the image
and less on the upper half. This trend is also seen in the head
movement maps, as more of the fixations fall on the lower half
of the image compared to the upper half. Saliency maps also
show a strong bias towards the lower half of the image for
the building images, but show less qualitative agreement on
the other image categories. Additionally, fractal images tend
to show the strongest center bias with more activity in the
center of the image, and this is captured in the eye movements,
interest points, and head movements. We also note that the
head marginal FDMs are more concentrated near the center of
the image, while for both the eye fixation and interest points,
the marginal FDMs are more uniformly distributed across the
image.

D. Category-Specific Head Movement Metrics

We compared differences in head movement metrics to see
if they were sensitive to the image category. Specifically,
we examined differences in head movements based on the
number of head fixations, head fixation duration, the num-
ber of head inter-fixation movements, and head inter-fixation
movement amplitude. A one-way ANOVA revealed significant
main effect of image category on the number of fixations,
F(4,120) = 10.01, p = 5.03 x 10~7". The number of fixations
was significantly higher for the old home interiors compared to
the other image categories (all p-values < 0.05). A one-way
ANOVA revealed significant main effect of image category
on fixation duration, F'(4,120) = 10.96, p = 1.32 x 10~".
Fixation duration was significantly lower for the old home
interiors compared to the other image categories (all p-values
< 0.05). Furthermore, fixation duration for fractals was signifi-
cantly higher compared to landscapes. Inter-fixation movement
amplitude was significantly higher for the old home interiors
compared to buildings and fractals (all p-values < 0.05). Inter-
fixation movement amplitudes for landscapes and new home
interiors were not statistically different from the other image
categories (all p-values > 0.05).

We found significant differences in head movement metrics
across image categories, suggesting that subjects used different
exploration strategies for all images that they viewed. In
particular, we found that viewing of old home interior im-
ages resulted in significantly different head movement metrics
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Fig. 2. Aggregate results of natural scene analysis at 6 x 8 resolution. Each subplot shows a distribution of measured correlations between two types of maps
compared against the null hypothesis and sample error hypothesis. Means of each distribution are shown above the histograms, with error bars indicating
standard error given the 100 images used. Most error bars are smaller than the markers used. (A) Fixation and Interest maps. (B) Fixation and Computed
saliency maps generated from Itti et al. (1998). (C) Interest and saliency maps. (D) Fixation and head movement maps. (E) Interest and head movement maps.
(F) Computed saliency and heaed movement maps. All measured averages are significantly above the null hypothesis (p < 0.05). All measured averages are
below the sample error hypothesis (p < 0.05). The legend in panel F applies to all panels.

compared to the other image categories. This difference may
be due to the fact that the old home interiors were the lowest
resolution images among all image categories. While others
have studied changes in eye fixations when viewing low-
resolution images compared to high-resolution images [18],
very little is known about how image resolution affects head
movements.

IV. DISCUSSION

Selective attention is a crucial component of perception
and cognition, allowing adaptive behavior in the face of
overwhelming amounts of raw sensory data' Much work has
been devoted over the last decades to compare the predic-
tions of models of selective attention with behavioral data.
Nearly all of this work is concerned with selections expressed
by eye movements which, by definition, are limited to the
instantaneous field of vision. It is, however, clear, that the

'The numbers of somatosensory and visual afferents in humans are each
on the order of 10%. Elementary application of Shannon’s information theory
shows that the channel capacities of these two sensory systems alone are on
the order of 109 bits per second [19], an amount enormously higher than what
can be expected to be processed in detail by the brain. Judicial selection of the
instantaneously relevant sensory data is therefore of the highest importance.

rotation of the eyes in their orbits selection is not the only
possible selection mechanism. Following ideas originating in
the pre-motor theory of selective attention [20], we suggest
that shifts of attention can occur from the smallest scales,
i.e. from within locations projected onto different parts of the
foveola [21] all the way to movements of the torso [22], [23].
We propose that attentional selection makes use of all of these
affordances and that the underlying mechanisms for moving
these different effectors are the closely related. We here focus
on one intermediate scale, movements of the head, which thus
reflect shifts of attention just like eye movements, except at a
larger spatial scale.

Although when required the eyes can deviate from the
orientation of the head by a large amount, eye position
during natural vision is strongly coupled to head position.
Stahl [24] found that in a paradigm where both head and eye
movements were possible to localize illuminated LEDs in the
environment, normal human subjects tend to avoid large eye
movements and replace them instead with head movements.
Over a small range around a fixed head position (median
13°, mean 18° horizontal, smaller for vertical), subjects only
made eye movements while larger deviations usually involved
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Fig. 3. Marginal fixation density maps (FDMs) across image categories (columns) and modalities (rows). The eye FDMs were calculated using the fixation
data from all subjects and images in [5]. The interest FDMs were calculated using the first interest point selection from the data in [12]. The head FDMs
were calculated based on the head movements recorded during the VR experiment. The saliency FDMs were based on the saliency maps of all images in each
category, calculated using a bottom-up visual attention model [6]. Within each modality, warmer colors indicate image regions that had either more fixations
(eye and head), more selections (interest points), or higher activity (saliency) compared to the other image categories.

head motions. Similar results were obtained in experimental
paradigms closer to ours in which human participants were
exposed to virtual reality environments. Sitzmann and collab-
orators [15] found that mean gaze direction relative to the
head orientation ~ 13°, in close agreement with another VR
experiment [25] where mean was ~ 11°. Even less deviation
of eye direction from head direction was found [26] when eye
and head movements were recorded while participants walked
in a natural environment: the deviation of the eye orientation
relative to the head orientation followed roughly a bell curve
with half-width of ~ £8°. These results also agree with the
well-known center bias of visual observers, typically described
in the frame of visual stimuli presented e.g. on a screen [5],
[27], [28] but demonstrated also in the reference frame of the
head [26].

These numbers, all in reasonably good agreement, led us
to hypothesize that head movement is a valid predictor of the
location where visual attention is deployed, at least within
a resolution in the range given by these numbers. If that
is the case, and if attention is a unified mechanism over
several scales, one expects that the different measures of
attention are positively correlated. Existing data did, however,
not allow for direct testing of this prediction since, to our
knowledge, correlations between behavioral measures of at-
tentional selection on the same visual input data have never

been determined. We fill this gap by quantitatively comparing
the attentional selection process in complex scenes predicted
in a computational model [6] with the behavior of freely
acting humans using eye fixations [5], [11] and conscious
interest selection [12] with the coarse attentional selection
given by head movements (this study). We found significant
positive correlations between all these measures. These results
strongly support that attentional selection processes at different
spatial scales are closely related and may be part of the
same underlying mechanism, and that head movements are
indicative of attentional selection at scales exceeding that of
eye movements, probably beyond ~ 10° — 15°. Within this
range, head direction can be used as a good first approximation
of gaze direction, because in many cases people are fixating in
the center of the head-centred field of view. It is a small step,
though not addressed in this study, to hypothesize that torso
movements are the next step in this progression, covering even
larger angles over which head movements are impossible or
uncomfortable.

V. CONCLUSION

We developed a novel experimental setup that allowed us to
record head movements of human participants as they viewed
natural images in a VR environment. Notably, we displayed
the same set of images that have been used in several studies
to understand visual saliency in terms of eye movements and



of interest point selections. This allowed us to quantitatively
compare head movements with previous measures of visual
attention. We found significant, positive correlation between
head fixations and other measures of visual attention at a
coarse spatial scale and also qualitative agreement in the
marginal fixation density maps across image categories. Our
results give insight into the role of head movements during
natural visual exploration, and provide evidence that head
movements may also be a marker for visual attention. While
our study was performed on healthy subjects, it may also be
useful to quantitatively measure head movements in clinical
populations, e.g. patients with autism or stroke patients. Head
movements could potentially be used as a biomarker that could
help clinicians treat these patients. An interesting extension of
our work would be simultaneous recording of eye and head
movements.
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