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Abstract—Perceptual organization is the process by which the
visual scene is structured into coherent units suitable for further
processing and selection. Having been primarily studied in 2D,
here we present a neural model for perceptual organization of
3D surfaces. We demonstrate that our model is able to reproduce
several key psychophysical results, including the spread of visual
attention across 3D surfaces.

I. INTRODUCTION

Since we live in a complex 3D world, competent interaction
with the surrounding 3D scene structure is indispensable to
us and our machines. Access to information about surfaces
present in the scene allows us to perform a wide variety of
tasks, ranging from motor planning (e.g. reaching for a cup a
certain distance away on the table) to spatial navigation (e.g.
following directions in a new city environment).

In studying perceptual organization, researchers have tradi-
tionally relied on simple 2D stimuli such as oriented bars [1].
Results from these studies provide support for the importance
of well-known Gestalt principles [2], [3], for instance that
visual elements are grouped together in a way that begins to
give meaning to the visual scene (e.g. figure vs. background).
However, it is unclear how well the results from these rel-
atively simple experiments generalize to the 3D objects and
scenes regularly encountered in natural settings. Because we
act in a 3D world, perceptual organization must also help to
arrange 3D information in a way that can guide our actions.

Perceptual organization also provides a structure for selec-
tively attending to groups of objects [4]. Supported by ex-
tensive psychophysical data, Nakayama, He, and Shimojo [5]
proposed that surface representations play a key role in
intermediate-level vision. For example, by selectively attend-
ing to a surface in 3D space, subjects can perform efficient
search for a conjunction target [6]. In a separate cueing ex-
periment, attention was shown to spread automatically across
surfaces [7]. These abilities indicate powerful mechanisms
for grouping objects into surfaces in 3D space, and suggest
that structuring the world in terms of surfaces might be
an ecologically important function. These results also have
implications for the internal representation of surfaces, because
they imply that the visual scene is processed in a way that
preserves its 3D structure. This representation must also be
able to bring together information from different sensory
modalities (e.g. vision, audition, etc.), in order to form a

common representation of the 3D environment that is useful
for an agent’s behavioral goals [8].

In addition to being studied by human psychophysical
approaches, perceptual organization has been the subject of
many studies in the visual system of non-human primates.
Many neurons in early visual cortex encode the side to which
an object border belongs, a phenomenon known as border
ownership [9]. Selectivity for the side of ownership involves
integrating global context information about the object. Several
models have been proposed [10], [11] to describe how a
neuron’s border ownership selectivity can be modulated by
visual input far away from its classical receptive field with
the observed high specificity of object details. One view is
that this contextual input is provided by feedback connections
from “grouping cells” [11] which bias the activity of border
ownership cells and thus generate their context-dependent
responses. Mihalas et al. [12] have also shown that grouping
cells can direct and sharpen a broad attentional spotlight to the
lower-level features of a specific object. In the present study,
we extend this grouping framework to 3D space to show how
oriented 3D elements can be grouped into planar surfaces.

Currently, we know very little about how surfaces are rep-
resented in the brain, and how this representation is computed.
Our model sheds light on a possible neural representation of
3D surfaces and relates this model to previous psychophysical
results.

Fig. 1. Network structure (adapted from ref. [13]).
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II. METHODS

An overview of the network structure of our model is
shown in Figure 1. We extend a neural model of visual
stereomatching [13] that is conceptually similar to grouping
models previously proposed for 2D stimuli [11], [12], [14].
The model contains three layers of neurons. The first layer
consists of monocular cells, which respond to visual features
(e.g. spots, edges, etc.) presented to either the left or right eye.
The input to the model consists of pairs of stereo images, as
would be seen by the left and right eyes. In our model, we
set the image input to a value of unity wherever a stimulus is
present and zero elsewhere.

The second layer consists of binocular cells, which receive
excitatory input from monocular cells. These cells are tuned to
a certain disparity based on a fixed spatial weighting between
the left and right monocular cells, analogous to the disparity-
selective binocular neurons in visual cortex of monkeys [15],
[16] and cats [17], [18]. Lateral inhibition between cells
representing different disparities along the same left- or right-
eye line of sight reduces potential false matches [19].

The third and final layer consists of planar grouping cells
which receive excitatory input from populations of disparity-
selective cells. Receptive fields of the planar grouping cells are
relatively broad and non-specific, resembling surface patches
with a certain range of depth and orientation selectivity in 3D
space. These cells may correspond to neurons found in parietal
cortex, which have been shown to be selective for the tilt and
slant of planar surfaces [20]. In our model, we used a total
of 15 planar grouping cells, which was sufficient to “tile” the
whole 3D visual scene. Planar grouping cells compete with
each other through lateral inhibition, which helps to select
the best possible interpretation of surfaces within the scene.
Additionally, planar grouping cells send reciprocal feedback
connections to the disparity-selective cells that define their
surface, akin to the relationship between grouping cells and
border ownership cells in models of 2D scenes [11], [12].
To avoid uncontrolled feedback excitation, feedback is mul-
tiplicative and only amplifies existing feedforward excitation.
Selective attention is modeled as an additive input to those
planar grouping neurons representing attended objects. This
attentional modulation input is set to a value of 0.25 of the
sensory input.

All model neurons are simulated as single compartment
units with an activity that is modeled as a continuous variable
(rate coding). These units are zero-threshold, linear neurons
which receive excitatory and inhibitory current inputs. The
activity of the units is determined by a set of coupled, first-
order nonlinear ordinary differential equations, which can be
solved in MATLAB (MathWorks) using standard numerical
integration methods (Euler, Runge-Kutta, etc.)

III. RESULTS

Figure 2 illustrates the experimental paradigm of He and
Nakayama [7]. In Figure 2A, subjects had to search for
the odd-colored target in the middle depth plane; planes are
outlined by rectangles that were not visible to the observers.

Fig. 2. Psychophysical and model results (adapted from ref [7]). For each
trial type (A or B), the top row shows the different stimuli, the middle row
shows representative reaction times, and the bottom row shows the degree
of attentional modulation of disparity-selective cells on the attended plane.
Increase in activity is assumed to be inversely proportion to reaction times.

The target was unique in this search plane but visually identical
distractors were present in other depth planes. In A-a, objects
are aligned with the search plane while in A-b and A-c,
they are slanted out of the plane. The middle row in A
shows measured reaction times for three different numbers of
distractors. They are significantly shorter when the objects are
coplanar with the search plane (A-a) compared to when they
are not aligned with the plane (A-b and A-c).

In our model, we assume that the visual system can selec-
tively direct attention towards a specific surface by providing
additional excitatory input to the grouping cell that represents
this surface. As shown in Figure 1, activity from the grouping
cell selectively feeds back to all objects on that surface. In
the case of Figure 2A-a, the grouping cell corresponding to
the middle fronto-parallel plane receives this attentional input.
Activation of the disparity-selective cells in the search plane,
shown in Figure 2A-a, bottom row, is thus high. Among the
objects in the search plane, the target has a unique color,
which results in efficient search and the target being identified
immediately. Reaction times are difficult to simulate in detail,
therefore the increase in mean activity of disparity-selective
cells on the attended plane due to attentional modulation is
plotted instead, which is assumed to be inversely proportional



Fig. 3. Spread of attention across surfaces. When attention is directed to the
center slanted plane (as in the experiment in Figure 2B-a), attention enhances
the activity of all cells along the surface (red), while suppressing the activity
of cells belonging to other surfaces (blue).

to reaction times. The high activation level, bottom row,
translates thus into short reaction times, middle row.

In contrast, in Figure 2A-b, the search plane is no longer
a well-formed surface but contains objects that are slanted
backwards. Directing attention to the middle fronto-parallel
plane then has little effect on the disparity-selective cells in
the search plane. Search therefore cannot occur entirely within
a single plane of coplanar, grouped elements and becomes
inefficient, with much higher reaction times (middle row).
These long reaction times are reflected in the low activation
level of the disparity-selective cells (bottom row). Figure 2A-c
shows the analog result for figure elements that are slanted
forward rather than backwards, as in A-b. Again, reaction
times are long and population activity is low.

The result is not restricted to fronto-parallel planes, as
similar reaction time results were also found for slanted planes
in Figure 2B. When subjects are instructed to search in a plane
that is coplanar with the orientation of the figure elements
(middle plane in B-a), search is fast (B-a, middle row). In
contrast, when the figure elements do not align with the search
plane (top row in B-b and B-c), reaction time is increased
(middle row). Again, under the assumption that reaction times
are inversely related to reaction times, the model reproduces
human behavior (bottom row).

Attention to grouping neurons is then able to select sets of
objects organized in planes. Reaction times were fastest when
the search array was a well-formed surface defined by locally
coplanar elements. When search array elements were slanted
away from this surface, reaction times increased. These results
suggest that attention is linked to and spreads across perceived
surfaces, which organize the visual scene (Figure 3).

IV. CONCLUSION

Using a simple model of perceptual organization in 3D,
we are able to reproduce psychophysical results from a visual
search task that required allocation of selective attention to
surfaces within the scene. The same grouping cells which or-
ganize the scene into planes also act as “handles” for top-down

selective attention, enhancing the activity of coplanar elements
belonging to the plane. Competition between grouping cells
results in surface enhancement of the plane corresponding to
the attended grouping cell, and suppression of other planes
within the scene. Our proposed surface representation aids
visual processing by providing a critical link between low-
level visual features and high-level object representations.
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