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Abstract Visual processing of objects makes use of both
feedforward and feedback streams of information. How-
ever, the nature of feedback signals is largely unknown, as
is the identity of the neuronal populations in lower visual
areas that receive them. Here, we develop a recurrent neural
model to address these questions in the context of contour
integration and figure-ground segregation. A key feature
of our model is the use of grouping neurons whose activ-
ity represents tentative objects (“proto-objects”) based on
the integration of local feature information. Grouping neu-
rons receive input from an organized set of local feature
neurons, and project modulatory feedback to those same
neurons. Additionally, inhibition at both the local feature
level and the object representation level biases the inter-
pretation of the visual scene in agreement with principles
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from Gestalt psychology. Our model explains several sets
of neurophysiological results (Zhou et al. Journal of Neu-
roscience, 20(17), 6594–6611 2000; Qiu et al. Nature Neu-
roscience, 10(11), 1492–1499 2007; Chen et al. Neuron,
82(3), 682–694 2014), and makes testable predictions about
the influence of neuronal feedback and attentional selection
on neural responses across different visual areas. Our model
also provides a framework for understanding how object-
based attention is able to select both objects and the features
associated with them.

Keywords Recurrent processing · Shape perception ·
Feedback · Grouping · Perceptual organization · Contour
processing

1 Introduction

Gestalt psychologists recognized the importance of the
whole in influencing perception of the parts when they
laid out several principles (“Gestalt laws”) for percep-
tual organization (Wertheimer 1923; Koffka 1935). Contour
integration, the linking of line segments into contours, and
figure-ground segregation, the segmenting of objects from
background, are fundamental components of this process.
Both require combining local, low-level and global, high-
level information that is represented in different areas of the
brain in order to segment the visual scene. The interaction
between feedforward and feedback streams carrying this
information, as well as the contribution of top-down influ-
ences such as attentional selection, are not well understood.

The contour integration process begins in primary visual
cortex (V1), where the responses of orientation selective
neurons can be modulated by placing collinear stimuli outside
the receptive fields (RFs) of these neurons (Stemmler et al.
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1995; Polat et al. 1998. Contextual interactions between V1
neurons have often been summarized using a “local associ-
ation field”, where collinear contour elements excite each
other and noncollinear elements inhibit each other (Ullman
et al. 1992; Field et al. 1993). Results from neuroanatomy
lend support to these ideas, as the lateral connections within
V1 predominantly link similar-orientation cortical columns
(Gilbert and Wiesel 1989; Bosking et al. 1997; Stettler et al.
2002). Computational models based on these types of local
interactions have successfully explained the ability of V1
neurons to extract contours from complex backgrounds (Li
1998; Yen and Finkel 1998; Piëch et al. 2013). While some
of these models also incorporate feedback connections,
the mechanisms by which higher visual areas construct
the appropriate feedback signals and target early feature
neurons are not clearly specified. One of the main purposes
of the present study is to introduce concrete neural circuitry
that makes this recurrent structure explicit, thereby allow-
ing us to make quantitative predictions and compare model
predictions with experimental data.

Segmenting an image into regions corresponding to
objects requires not only finding the contours in the image but
also determining which contours belong to which objects.
This is part of what is known as the binding problem, as it is
unclear how higher visual areas “know” which features be-
long to an object (Treisman 1996). One solution involves
differential neural activity, where the neurons responding to
the features of an object show increased firing compared
with neurons responding to the background. Such response
enhancement was first observed in V1 for texture-defined
figures (Lamme 1995). Alternatively, it has been proposed
that binding is implemented by neurons that represent fea-
tures of the same object firing in synchrony while neu-
rons representing features of different objects firing asyn-
chronously (“binding by synchrony”; for review see Singer,
1999). While this is an attractive and parsimonious hypothe-
sis, experimental evidence is controversial (Gray et al. 1989;
Kreiter and Singer 1992; de Oliveira et al. 1997; Thiele and
Stoner 2003; Roelfsema et al. 2004; Dong et al. 2008).

Border-ownership selective cells that have been found in
early visual areas, predominantly in secondary visual cor-
tex (V2), appear to be dedicated to this task (Zhou et al.
2000). Border-ownership selective cells encode where an
object is located relative to their RFs. When the edge of a
figure is presented in its RF, a border-ownership cell will
respond with different firing rates depending on where the
figure is located. For example, a vertical edge can belong
either to an object on the left or on the right of the RF.
A border-ownership selective cell will respond differently
to these two cases, firing at a higher rate when the figure
is located on its “preferred” side, even though the stim-
ulus within its RF may be identical. For a more detailed
operational definition of how border-ownership selectivity

is determined experimentally, see Section 2.4. Border-
ownership coding has been studied using a wide variety
of artificial stimuli, including those defined by luminance
contrast, color contrast, figure outlines (Zhou et al. 2000),
motion (von der Heydt et al. 2003), disparity (Zhou et al.
2000; Qiu and von der Heydt 2005), and transparency (Qiu
and von der Heydt 2007) as well as, more recently, with
faces (Hesse and Tsao 2016) and within complex natural
scenes (Williford and von der Heydt 2014, 2016).

To explain this phenomenon, some computational mod-
els assume that image context integration is achieved by
propagation of neural activity along horizontal connections
within early visual areas. Border-ownership information
could be generated from the asymmetric organization of sur-
rounds (Nishimura and Sakai 2004, 2005; Sakai et al. 2012)
or from a diffusion-like process within the image repre-
sentation (Grossberg 1994, 1997; Baek and Sajda 2005;
Kikuchi and Akashi 2001; Pao et al. 1999; Zhaoping 2005).
However, these models have difficulties explaining the fast
establishment of border ownership which appears about
25ms after the first stimulus response (Zhou et al. 2000).
Propagation along horizontal fibers over the distances used
in the experiments would imply a delay of at least ≈70 ms
(Girard et al. 2001, based on the conduction velocity of
horizontal fibers in primate V1 cortex; we are not aware
of corresponding data for V2). Furthermore, such models
are difficult to reconcile with the observation that the time
course of border-ownership coding is largely independent of
figure size (Sugihara et al. 2011).

An alternative computational model involves popula-
tions of grouping (G) cells which explicitly represent (in
their firing rates) the perceptual organization of the visual
scene (Schütze et al. 2003; Craft et al. 2007). These cells
are reciprocally connected to border-ownership selective
(B) neurons through feedforward and feedback connections.
The combination of grouping cells and the cells signaling
local features represents the presence of a “proto-object”
(Rensink 2000), resulting in a structured perceptual orga-
nization of the scene. Among the operations that can be
performed efficiently in the organized scene are tasks that
require attention to objects. In our model, attention to an
object targets the grouping neurons representing it, rather
than, e.g., all low-level features within a visual area that is
defined purely spatially (like everything within a certain dis-
tance from the center of attention). Therefore attention is
directed to proto-objects, resulting in the modulation of B
cell activity through feedback from grouping cells (Mihalas
et al. 2011). This proto-object based approach is consistent
with psychophysical and neurophysiological studies (e.g.
Duncan 1984; Egly et al. 1994; Scholl 2001; Kimchi et al.
2007; Qiu et al. 2007; Ho and Yeh 2009; Poort et al. 2012).

Similar to our approach, several other studies also
make use of recurrent connections between different visual
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areas. Zwickel et al. (2007) studied the influence of feed-
back projections from higher areas in the dorsal visual
stream on border-ownership coding. Feedback in their
model is only to the border-ownership selective neurons,
so they did not test their model on contour integration
tasks. Domijan and Ṡetić (2008) proposed a model involving
interactions between the dorsal and ventral visual streams
for figure-ground assignment. In their model, there is no
explicit computation of border ownership, but instead differ-
ent surfaces are represented by different firing rates. Jehee
et al. (2007) proposed a model of border-ownership coding
involving higher visual areas, including areas TE and TEO.
In their model, border-ownership assignment depends on the
size of the figure, which is directly correlated to the specific
level in the visual hierarchy of the model at which an object
is grouped. They did not test their model on stimuli with
noise, or study the effect of object-based attention. Sajda
and Finkel (1995) proposed a complex neural architecture
involving contour, surface, and depth modules that performs
temporal binding through propagation of neural activity
within and between populations of neurons. Tschechne and
Neumann (2014) proposed a model quite similar to ours.
Their model requires a repeated sequence of filtering, feed-
back, and center-surround normalization that is solved in
an iterative manner. Unlike in our model, V4 neurons in
their model do not respond to straight, elongated contours.
Also, their model only provides a coarse picture of the tim-
ing of contour integration and border-ownership assignment
across visual areas. Layton et al. (2012) also proposed a
model that performs border-ownership assignment. Their
model introduces an additional neuron class (“R cells”) that
implements competition between grouping cells of differ-
ent RF sizes (similar to a model by Ardila et al. 2012),
and the feedback to B cells is by means of shunting inhi-
bition instead of the gain-modulation that we use in our
model.

Previous experimental studies have suggested the
involvement of multiple visual areas in contour integration
and figure-ground segregation (Poort et al. 2012; Chen et al.
2014). The purpose of the present paper is to extend pre-
vious models of perceptual organization (Craft et al. 2007;
Mihalas et al. 2011) to explain how feedback grouping cir-
cuitry can implement the mechanisms necessary to accom-
plish both contour integration and figure-ground assign-
ment. Most models mentioned above reproduce results
restricted to a single set of experiments (e.g. contour inte-
gration or figure-ground segregation). In contrast, our model
is able to reproduce results from at least three sets of
experiments using the same set of network parameters. Our
model provides a general framework for understanding how
features can be grouped into proto-objects useful for the
perceptual organization of a visual scene. In addition, our
model also allows us to explain effects of object-based

Fig. 1 Structure of the model network. Each circle stands for a popu-
lation of neurons with similar receptive fields and response properties.
Magenta, blue, and orange lines represent feedforward excitatory,
lateral inhibitory, and feedback excitatory projections, respectively.
Edges and other local features of a figure (black dashed parallelo-
gram) activate edge cells (E) whose receptive fields are shown by green
ellipses. Edge cells project to border ownership cells (B) that have
the same preferred orientation and retinotopic position as the E cells
they receive input from. However, for each location and preferred ori-
entation there are two B cell populations with opposite side-of-figure
preferences, in the example shown BL whose neurons respond pref-
erentially when the foreground object is to the left of their receptive
fields and BR whose members prefer the foreground to the right side
of their receptive fields. E cells also excite other E cells with the same
preferred orientation (connections not shown), as well as a class of
inhibitory cells (IE) which, in turn, inhibit E cells of all preferred ori-
entations at a given location. Only E cells of one preferred orientation
are shown. B cells have reciprocal, forward excitatory and feedback
modulatory connections with two types of grouping cells, Gc and Go,
which integrate global context information about contours and objects,
respectively. E cells receive positive (enhancing) modulatory feedback
from these same grouping cells. Opposing border ownership cells com-
pete directly via IB cells and indirectly via grouping cells, which bias
their activity and thus generate the response differences of opposing
border ownership selective neurons. G cell populations also directly
excite inhibitory grouping cells (IG; again with the indices L and R),
which inhibit Gc cells nonspecifically and Go cells in all orientations
except the preferred one. Top-down attention is modeled as input to
the grouping cells and can therefore either be directed towards objects
(solid lines) or contours (dashed lines) in the visual field (top)

attention and the role of feedback in parsing visual scenes,
areas of research which have not been extensively studied.

2 Materials and methods

2.1 Model structure

The model consists of areas V1, V2, and V4 (Fig. 1). Input
comes from a binary-valued orientation map with four ori-
entations (0, π/4, π/2, and 3π/4 relative to the horizontal).
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The input signal is first represented in V1 and then propa-
gated to V2 and V4 by feedforward connections. Area V4 pro-
vides feedback to lower areas (see Supplementary Material
for equations). Neurons in higher areas have larger RFs and
represent the image at a coarser resolution. Linear RF sizes
in area V4 are four times larger than in V2, which, in turn,
are twice as large as those in V1.

To achieve contour integration, we implement mutual
excitatory lateral connections between V1 edge (E) cells
with the same orientation preference. These connections
are similar to the local association fields used in other
models (Li 1998; Piëch et al. 2013). Background sup-
pression is carried out through a separate population of
inhibitory (IE) cells. The input from V1 edge cells activates
border-ownership (B) cells in V2. The B cells inherit their
orientation preferences from their presynaptic E cells and
for each orientation, there are two B cell populations with
opposing side-of-figure preferences. A combination of lat-
eral connections within V2 and feedback connections from
V4 (described below) is used to generate border-ownership
selectivity. Inhibitory (IB) cells in V2 cause competition
between B cells that have the same location and same orien-
tation preference and opposite side-of-figure preference.

In V4, two different types of grouping cells exist. Con-
tour grouping cells (Gc) integrate local edge information
and are selective for oriented contours (Fig. 2a). Object
grouping cells (Go) are sensitive to roughly co-circular
arrangements of edges, thus implementing Gestalt laws
of good continuation, convexity of contour, and compact
shape (Fig. 2b). Competition between separate contours and
objects is carried out by a population of inhibitory (IG)
cells. Grouping (Gc and Go) cells project back reciprocally
to those B cells from which they receive input, and also
to the E cells that project to those B cells. This feedback
enhances the activity of E cells along contours and biases
the competition between B cells to correctly assign border
ownership along object boundaries. Importantly, feedback

Fig. 2 Spatial distribution of border ownership cell to grouping cell
connectivity; darker pixels indicate stronger connection weights. a
Contour grouping neurons integrate features along oriented contours
(horizontal line shown in black), emphasizing the Gestalt principle of
good continuation. b Object grouping neurons integrate features in a
co-circular pattern (square figure shown in black), emphasizing the
Gestalt principles of convexity and proximity

connections are modulatory, rather than driving, such that
the feedback does not modify activities of cells that do not
receive sensory input. Biophysically, this can be achieved if
the feedback projections employ glutamatergic synapses of
the NMDA type (Wagatsuma et al. 2016).

To model the effect of object-based attention, we assume
that areas higher than V4 provide additional excitatory input
to those grouping cells whose activity represents the pres-
ence of objects or contours in the visual scene, as shown in
Fig. 1. This attentional input is driving (as opposed to mod-
ulatory) but it is relatively weak; we select its strength as
7% of that of the driving input to the sensory (E) cells. In
one part of this study (Section 3.2), we model the effect of
a lesion in V4 that removes the feedback completely by set-
ting the weight of feedback connections from V4 to lower
areas to zero.

Our approach is an extension of the proto-object-based
model of perceptual organization proposed by Mihalas et al.
(2011). Different from their approach, we include a new
population of contour grouping neurons (the Gc cells) to
explain recent results on cortico-cortical interactions during
contour integration (Chen et al. 2014). As a result, top-down
attention in our model can either be directed to contours
or to objects. Our model is also able to reproduce the time
course of neural responses in different visual areas, while
the Mihalas et al. (2011) model only explains mean neural
activities. In order to create more complex input stimuli, we
also increased the number of model orientations from two to
four. As a simplification to their model, we only include one
scale of grouping neurons since we focus on mechanisms
that do not require multiple scales.

2.2 Model implementation

Model neuronal populations (usually referred to as ‘‘neurons”
in the following) are represented by their mean activity
(rate coding). The activity is determined by a set of cou-
pled, first-order nonlinear ordinary differential equations
which was solved in MATLAB (MathWorks, Natick MA)
using standard numerical integration methods. The mean
firing rate is necessarily positive, therefore units are simple
zero-threshold, linear neurons which receive excitatory and
inhibitory current inputs with their dynamics described by,

τf ′(t) = −f +
[∑

W
]
+ (1)

where f represents the neuron’s activity level and τ its time
constant, chosen as τ = 10−2 s for all neurons. The sum
is over all W which are the neuron’s inputs, f ′ is the first
derivative of f with respect to time, and [ ]+ means half-
wave rectification.

All simulations were performed on a 300-core CPU clus-
ter running Rocks 6.2 (Sidewinder), a Linux distribution
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intended for high-performance computing. A total of 100
simulations were performed for each experimental condi-
tion, and our results are based on the mean neural activities
averaged over these simulations with different randomly
selected stimulus noise patterns, see Sections 2.3 and 2.4.

To constrain our model parameters, we used three sets of
neurophysiological data. The first comes from recent con-
tour grouping results (Chen et al. 2014), and our model was
able to largely reproduce the magnitude and time course of
contour integration at both the V1 and V4 levels. The sec-
ond comes from studies of border-ownership coding (Zhou
et al. 2000) and we show that our model not only explains
the emergence of border ownership selectivity but also its
approximate time course as reported in that study. The third
set of experimental data constraining our model is from the
study by Qiu et al. (2007) of the interaction between border-
ownership selectivity and selective attention. In order to
fit the model parameters, we started from the parameters
given by Mihalas et al. (2011), and modified them to fit
the larger body of experimental results to include contour
integration, border-ownership selectivity, and attentional
selection.

2.3 Contour integration experiments

For the contour integration experiments reported by Chen
et al. (2014), awake behaving monkeys were trained to
perform a two-alternative forced-choice task using two
simultaneously presented patterns, one containing a contour
embedded in noise and one that was noise only (see Fig. 3
for examples). The patterns were composed of 0.25◦ by
0.05◦ bars distributed in 0.5◦ by 0.5◦ grids. The diameter of
the patterns was 4.5◦, and the number of bars in the embed-
ded contour was randomly set to 1, 3, 5, or 7 bars within a
block of trials in order to control the saliency of the contour.
To obtain a reward, the monkey had to saccade to the pattern
that contained the contour. When the number of bars was
set to 1, both presented stimuli were noise patterns, and the
monkey was rewarded randomly with a probability of 50%.
While the animals were performing the task, simultaneous
single- or multi-unit recordings were made in area V1 and
V4 neurons with overlapping receptive fields.

We modeled these experiments by creating visual stimuli
contained in a 4.5◦ by 4.5◦ area. We “recorded” from the V1
receptive field that was at the center of the stimulus (marked
by the yellow circles in Fig. 3), as well as from the cor-
responding V4 neuron. Input from this area was projected
onto a V1 layer of 64 × 64 neurons, each with a receptive
field size of ∼ 0.7◦ so the receptive fields overlapped ten-
fold at each location in the visual field. We divided the input
field into a 9 × 9 grid (each grid point at the center of a 0.5◦
by 0.5◦ area) and we placed at each grid location a stim-
ulus bar consisting of three adjacent pixels, corresponding

to a size ∼ 0.21◦ by ∼ 0.07◦. Each stimulus bar had one
of four orientations, 0, π/4, π/2, or 3π/4. As in the Chen
et al. (2014) experiment, contours consisted of 1, 3, 5, or 7
adjacent stimulus bars. We positioned the contour either at
the center of the visual field so that the center element of the
contour was in the RF of the “recorded” cell (Contour con-
dition, Fig. 3a), or offset from the center of the visual field,
such that the “recorded” neuron was next to the contour
(Background condition, Fig. 3b). We changed the length of
the contour by adding bars to both ends of the contour. Due
to their size, V4 receptive fields basically enclosed the entire
contour. For more details on the stimulus configuration, see
Section 3.1.

2.4 Figure-ground segregation experiments

For the figure-ground segregation experiments (Zhou et al.
2000; Qiu et al. 2007; Zhang and von der Heydt 2010),
awake, behaving monkeys were trained on a fixation task.
Receptive fields of each recorded neuron in areas V1 and
V2 were first mapped to determine the optimal stimulus
properties for that neuron. Afterwards, in some experi-
ments, a square shape was presented on a uniform gray
background with one edge of the square centered on the
receptive field of the neuron at the neuron’s preferred ori-
entation. In other experiments (results shown in Figs. 9
and S3) the stimulus consisted of two partially overlapping
squares, and again the receptive field of the recorded neu-
ron was centered at its preferred orientation on one edge of
one of the squares. The size of the square varied between
experiments but it was always chosen such that the clos-
est corner was far away from the classical receptive field
of the recorded neuron. The square was presented in two
positions between which it was “flipped” along the long
axis of the neuron’s receptive field. For instance, if the pre-
ferred orientation was vertical, the square was presented
either to the left or the right of the cell’s receptive field (we
used this example in the choice of the indices in Fig. 1).
The difference in the firing rate of the neuron for when the
square appears on one side versus the other side is defined
as the border-ownership signal. Importantly, in all stimu-
lus conditions, local contents within the receptive field of
the neuron remained the same between these two condi-
tions; only global context changed, so the neuron had to
integrate information from outside its classical receptive
field.

We modeled these experiments by creating visual stim-
uli that were projected onto the V1 layer. The input to the
simulation was either a single square of a size that maxi-
mally activated Go grouping cells of the size chosen in our
model, or two partially overlapping squares, as shown in
Fig. S3, with each of these squares having the same opti-
mal size. In other models (Craft et al. 2007; Mihalas et al.
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2011; Russell et al. 2014), grouping cells of many scales are
present, covering the range of possible objects in the input.
We calculated border-ownership selectivity at the V2 level
using the vector modulation index defined in Section 2.5.
In order to create noisy versions of the single square image
(Fig. 7), we followed a similar approach as in the contour
integration experiments, Section 2.3. We again divided the
visual field into a 9 × 9 grid and we positioned horizontal
and vertical bars at specific grid points to generate a square.
We then placed a stimulus bar at all other grid points, with
their orientations randomly chosen from four possibilities,
0, π/4, π/2, and 3π/4.

2.5 Quantitative assessment of border ownership
selectivity: vector modulation index

While the border ownership signal discussed in the previous
section (the difference in firing rates between presentations
of a figure on the two sides of a a neuron’s RF) is useful
to characterize border-ownership selectivity for that par-
ticular neuron, description of population behavior requires
a more general measure. We use the vector modulation
index, introduced by Craft et al. (2007) and defined by the
expression

−→v (x, y) = mı̂(x, y)ı̂ + mĵ (x, y)ĵ (2)

where ı̂ and ĵ are unit vectors along the horizontal and ver-
tical image axis, respectively, and the components mı̂(x, y)

and mĵ (x, y) are the usual modulation indices along their
respective axes, defined as

mı̂(x, y) =
∑

θ Bθ (x, y) cos θ∑
θ |Bθ(x, y) cos θ |

mĵ (x, y) =
∑

θ Bθ (x, y) sin θ∑
θ |Bθ(x, y) sin θ |

(3)

Here, Bθ(x, y) is the border ownership signal (difference
between the activities of the two opposing B neurons) at the
preferred orientation θ at position (x, y), and θ runs over
all angles taken into account in the model (four directed ori-
entations in our case, namely 0, π/4, π/2, and 3π/4, each
with both side-of-figure preferences). Vertical bars in the
sums in the denominators indicate absolute values.

Both components in Eq. (3) are limited to values between
+1 and −1. For the x-component, for instance, a positive
value of mı̂(x, y) signifies that the figure is to the right of
position (x,y) and a negative value signifies that the figure
is to the left. Its absolute value indicates the “strength” of
the border-ownership signal, with zero being equivalent to
ambivalence between left and right. Corresponding com-
ments apply to the y-component, mĵ (x, y), regarding the
figure’s position upward or downward of (x,y). The direc-
tion of the vectorial modulation index −→v (x, y) defined in
Eq. (2) indicates the position of the foreground figure in the
two-dimensional image plane relative to the point (x,y). For
instance, positive values in both components [mı̂(x, y) > 0,
mĵ (x, y) > 0] indicate that the figure is located upwards
and to the right of (x,y).
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Fig. 3 Normalized V1 E cell and V4 Gc cell population responses
to contours of varying lengths in either the contour (a) or the back-
ground (b) condition. In (a), the “recorded” neuron is on the contour;
in (b), it is offset from the contour. The top row shows stimuli,
the second and third rows show activity in model areas V1 and
V4, respectively. Yellow circles mark the RFs of the V1 neurons
whose activity is shown in Fig. 4. Activity from model area V2
is not shown because a single contour does not produce clear bor-
der ownership selectivity, and the activity in V2 is essentially the
same as that in V1, but with reduced spatial resolution due to the

lower number of neurons. Columns in each condition show, from
left to right, increasing contour length, with the right-most column
showing a jittered stimulus configuration (see text). Neural activity
is color coded and normalized to the 7-bar stimulus in both contour
and background conditions, with warmer colors representing higher
activity (see color bar at right). To avoid unbalanced inputs near the
boundaries of the visual field we use periodic boundary conditions.
We crop this and all other maps of population activity by one pixel
on each side to remove artifacts related to using periodic boundary
conditions
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3 Results

3.1 Contour enhancement in V1 and V4

We examined contour-related responses in our model using
visual stimuli composed of collinear bars among randomly
oriented bars (Fig. 3), closely matching the stimuli used in
the physiological experiments by Chen et al. (2014). The
number of collinear bars constituting an embedded con-
tour was set to either 1, 3, 5, or 7 bars, determining the
length of the embedded contour, which also controlled its
saliency. When the number of collinear bars was one, the
stimulus was identical to a noise pattern. We compared
the activity of model neurons whose RFs are centered on
the contours or in the noise background (but close to con-
tours) with that obtained in the analogous positions during
neurophysiological recordings.

V1 responses were split into those of neurons on contour
sites (C-sites) and background sites (B-sites). For contour
sites (Fig. 3a), the embedded contour was centered on the

RF of a neuron with a preferred orientation matching that of
the contour. For background sites, the contour was laterally
placed 0.5◦ away from the RF center of the recorded neu-
ron, and a background bar was placed in the RF (Fig. 3b),
with the contour orientation again matching the preferred
orientation of the recorded neuron. Both V1 and V4 neurons
along the contour showed increased activity with contour
length. Neurons on the background showed increased sup-
pression with contour length. Correspondingly, we show in
Fig. 4 the responses of neurons whose preferred orientations
align with the contours (yellow circles in Fig. 3).

Except for an input delay of 40 ms corresponding to the
duration of visual processing from the retina to V1, we did
not add any time delays in the feedforward or feedback con-
nections of our model, as we were not attempting to repro-
duce any specific latency effects. Nevertheless, our model
generally reproduced the dynamics of neural responses to
contours in both V1 and V4 observed in the Chen et al.
(2014) experiment (Fig. 4a). The most salient feature of the
neuronal responses is that the levels of sustained activity
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Fig. 4 Normalized V1 E cell (contour and background sites) and V4
Gc cell neuronal activity and contour-response d ′ to contours of vary-
ing lengths. a V1 contour (top) and background (middle) sites and V4
sites (bottom) showed facilitation followed by saturation with increas-
ing contour length (see legend). V1 background sites showed greater
suppression with longer contours. The jitter condition involved a 7-
bar pattern where each bar was laterally offset to disrupt collinearity.
b Corresponding experimental results showing normalized and aver-
aged PSTHs from the Chen et al. (2014) study. c Contour-response

d ′ was higher for the V4 sites compared to the V1 contour sites, and
was facilitated by increasing contour length. V1 background sites had
increasingly negative d ′ with longer contours, indicating background
suppression. The jitter condition reduced the absolute value of the d ′
values to close to zero, making it similar to the baseline noise condi-
tion. d Corresponding experimental observations, showing the mean
contour-response d ′ from the Chen et al. (2014) study. Panels B and
D are modified from Figure 2 of Chen et al. (2014). All model results
(Panels a and c) are averages for a single neuron over 100 simulations
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differ based on the number of bars in the embedded contour.
This is observed both for contour sites and for background
sites but, importantly, this effect went in opposite direc-
tions for these two cases. As the number of collinear bars
increased from one to seven, V1 contour sites centered on
the contour showed increased activity, with response sat-
uration after five bars. In contrast, V1 background sites
that were offset from the embedded contour showed a
decrease in activity with increasing number of bars in the
background (response suppression). Similar to V1 contour
sites, V4 sites showed saturating responses with increas-
ing contour lengths (Fig. 4a, bottom). These results were
qualitatively similar to those obtained in the Chen et al.
(2014) experiments which are reproduced in Fig. 4b (their
Fig. 2a).

The model data also showed strong onset transients in
both (contour and background) V1 populations (Fig. 4a,
top and center), again in good agreement with experimental
results (Fig. 4b, top and center). Transients in V4 neu-
rons were weaker, in both model and experimental data,
and nearly absent in the experimental data (though not the
model) for longer contours (Fig. 4b, bottom). The transient
peak observed in the model results is due to a sharp sup-
pression of the activity level for a short (< 50ms) period
which is not observed in the empirical data. We believe that
this suppression is due to the strong inhibition at the V4
level between G and IG cells, without equivalent excitation
between different G cells.

Following Chen et al. (2014), we quantitatively ana-
lyzed the contour responses using the d-prime (d ′) metric
from signal detection theory (Green and Swets 1966), which
quantifies the difference in distributions of mean neuronal
firing rates between a contour pattern and the noise pattern
integrated over the whole interval shown in Fig. 4a, b, i.e. 0-
500 ms. Neuronal responses to the 1-bar pattern (the noise
pattern) were the baseline for examining contour-related
responses in V1 and V4, this pattern therefore had a contour-
response d ′ of zero. The contour-response d ′ increased with
contour length for both the V1 contour and V4 sites, and d ′
decreased with contour length for the V1 background sites,
Fig. 4c.

The agreement between model (Fig. 4c) and experimen-
tal results (Fig. 4d) is striking. One difference we note is that
the absolute values of all model d ′ substantially exceed the
corresponding experimental values. This is to be expected
since no noise was included in the model (other than the ran-
dom orientation of input stimulus bars which is also present
in the experimental approach) while there are surely multiple
sources of noise in the biological system. We have not thor-
oughly investigated this question but it is highly likely that
addition of noise to the model will decrease the d ′ values.

At first sight, it seems possible that V4 neurons respond
with a higher firing rate to longer contours than to shorter

ones simply as a consequence of the large size of RFs in
V4. In this view, the enhanced responses in V4 with increas-
ing contour length is due to the spatial summation of many
bars within the RF at the optimal orientation, independent
of their precise location in the RF. To investigate this pos-
siblity, Chen et al. (2014) introduced a “jitter” condition to
the 7-bar contour, where alternating collinear bars were lat-
erally offset by a small amount (much less than the receptive
field size) in order to disrupt the collinearity of the origi-
nal contour. They showed that jittering disrupted the contour
integration process and reduced the neural responses in V1
and V4 close to baseline levels (Fig. 4b, gray lines). We
found the same result in our model, Fig. 4a, gray lines.
Furthermore, in the jitter condition, contour-response d ′
approached baseline for the V1 and V4 sites, as shown in
the rightmost points for Fig. 4d for experimental data and
Fig. 4c for model results. In both cases, no substantial dif-
ference between the jitter condition and the baseline noise
condition was observed.

We also investigated the orientation and position depen-
dence of contour-related responses in V1 and V4, and found
close agreement of our model results with experimental
data (Chen et al. 2014). Due to space constraints, these
results are presented in the Supplementary Material. The
results for V4 are presented in Supplementary Fig. S1 and
the results for V1 are presented in Supplementary Fig. S2.

3.2 The role of feedback and attention in contour
grouping

While different forms of attention exist that can be flexibly
used for different tasks, we choose here to focus only on
the mechanisms of object-based attention (Egly et al. 1994;
Scholl 2001; Kimchi et al. 2007; Ho and Yeh 2009). We pos-
tulate that attention to objects acts at the level of grouping
neurons, in agreement with the Mihalas et al. (2011) model.
As shown in that study, modulation of the activity of group-
ing cells bypasses the need for attentional control circuitry
to have access to detailed object features. Instead, grouping
neurons are used as “handles” of the associated objects and
it is in their interaction with feature-coding neurons that fea-
tures are assigned to objects. One of the consequences of
this mechanism is that the spatial resolution of attentional
selection is coarser than visual resolution since the small-
est “unit” of spatial attentional deployment is the size of
the receptive (and projective) field of grouping cells, which
is considerably larger than the receptive fields of feature-
coding neurons at the same eccentricity. Behavioral results
show strong evidence in favor of this coarse attentional
resolution (Intriligator and Cavanagh 2001).

In our model, attention can be directed to objects, includ-
ing contours. For the contour integration experiments, this
is implemented as a top-down input to all contour grouping
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for the model with (green) and without attention (black), and for the
model with feedback removed (magenta). Attention strongly increased
contour-response d ′ in V4 (b), while the lack of feedback strongly
decreased contour-response d ′ in V1 (a)

neurons at the attended location, but, importantly, there was
no direct input to the feature-coding edge (E) cells. As we
have seen before (Fig. 4), d ′ in V1 and V4 populations
increases with the number of collinear bars, even in the
absence of attention. In addition, we now show that attention
increases the contour-response d ′ for both V1 and V4 neu-
rons, with the additive effect being much larger in V4 than
in V1 (Fig. 5). For the 7-bar contours, attention increases the
contour-response d ′ in V1 from 6.08 to 6.66 and in V4 from
7.80 to 11.59. This is consistent with findings that attention
has a much larger effect on higher-level neurons compared
to early sensory neurons (review: Treue 2001).

One of the advantages of computational modeling is that
it allows the study of scenarios that are difficult to imple-
ment empirically. One question that is difficult to answer
experimentally is how removal of feedback from V4 to
lower visual areas would change neuronal responses in V1
and V4, structures that are known to be connected bidirec-
tionally (Zeki 1978; Ungerleider et al. 2007). While it is
possible to study the influence of feedback on V2 (and other
areas) by cooling (Hupé et al. 1998) or pharmacological
inactivation (Jansen-Amorim et al. 2012) of area V4, such
manipulations only allow limited control of the effect on
multiple brain structures. In contrast, a computational model
allows the study of interactions between different areas with
perfect control. In the model, we can eliminate all feedback
from area V4 simply by “lesioning” the connections from
the grouping neurons to the V2 and V1 neurons (setting
their strength to zero), thus turning the model into a feed-
forward network. We found that this has the opposite effect
of applying attention on the d ′ metric: the decrease in con-
tour response d ′ was much larger in V1 compared to V4.
Removing feedback reduced the 7-bar contour-response d ′
in V1 from 6.08 to 3.77, and in V4 from 7.80 to 6.38 (Fig. 5).
We note that the contour-response d ′ in V1 is above zero
even without feedback from grouping neurons because of

the contribution of local excitatory connections to contour
integration. This asymmetric effect in contour response d ′
in the two areas (V1 and V4) may point to the different roles
of feedforward and feedback processing in early vision. We
are not aware of any experimental manipulations that com-
pletely remove feedback from area V4 without changing
the circuitry in other ways, so our results are a prediction
awaiting experimental falsification.

3.3 Border-ownership assignment and highlighting
figures in noise

We next apply our model to understanding border-
ownership assignment, discussed in Section 2.4. We focus
first on the standard square figure frequently used in neu-
rophysiological studies of this function (Zhou et al. 2000;
Qiu et al. 2007; Sugihara et al. 2011; Williford and von
der Heydt 2013, 2014; Martin and von der Heydt 2015).
In Fig. 6a, we show the input stimulus, the edge cell activ-
ity from area V1 of our model, the border-ownership vector
modulation field from V2 (defined in Section 2.5), and the
object and contour grouping cell activity from V4. Our
model enhances V1 activity along the edges of the square,
correctly assigns border ownership in V2 neurons (Zhou
et al. 2000, in agreement with), and enhances activity of
V4 neurons at the center of the square and the edges of the
square (object and contour grouping neurons, respectively).

We also show the time course of the border-ownership
signal for a RF located along the left edge of the figure
(indicated by the yellow circle in Fig. 6a). The firing rate
of a border-ownership selective neuron depends on which
side the figure is presented on with respect to its RF. In
Fig. 6b, the preferred neuron has a side-of-figure preference
to the right (red), while the non-preferred neuron has a side-
of-figure preference to the left (blue). The firing rate dif-
ference is the border-ownership signal, whose steady-state
value is used to compute the vector modulation index −→v
(Section 2.5). In Fig. 6c, we show that the border-ownership
signal (red) appears rapidly and with short latency compared
to the onset of the edge signal (black). Experimental data
show that the border-ownership signal appears ˜20 ms after
the onset of edge responses (Zhou et al. 2000). In our model,
the border-ownership signals appears almost instantly. We
believe that in addition to visual input, border-ownership
cells also receive grouping feedback and that this takes addi-
tional time which is not included in our model (see Craft
et al. 2007, as an example of a model with latencies).

We then extend this approach by adding additional ori-
ented bars to the stimulus, see Fig. 7. In the top row of the
figure, results are shown when the bar orientation within the
figure differs from that of the background, similar to the
texture-defined figures used in the Lamme (1995) experi-
ments. In the bottom row, bars within and outside the figure
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Fig. 6 Figure-ground segregation of a square object as in the Zhou
et al. (2000) experiments. a Shown left to right are the input stimulus,
the edge cell activity (E), the border ownership assignment along edges
(shown as the vector modulation index −→v , Section 2.5), the object
grouping neuron activity (Go) and the contour grouping activity (Gc).
Activities are normalized within each map, and warmer colors indicate
higher activity (see color bar at right). b Time course of normalized
border-ownership cell activity for the preferred side-of-figure (red) and

non-preferred side-of-figure (blue) for the receptive field marked by
the yellow circle in panel A. Here, the preferred side-of-figure is to the
right. c Timing of the normalized border-ownership signal (red) and
the edge signal (black). The BOS signal is defined as the difference in
activities of the two opposing pairs of border-ownership cells in panel
B. The edge signal is defined as the sum of the activities of the two
border-ownership cells. The curves are normalized to the same scale
(0–1) to show the time course of the responses

are all oriented randomly, similar to the noise stimuli used
in the Chen et al. (2014) study. As in Fig. 6, we again show
the responses of different populations of neurons in our
model. For both types of stimuli, the edges of the square,
even when broken up into different bars, are still enhanced
while the background bars are suppressed, especially within
the square. Interestingly, for the aligned stimulus (top row),
only the top and bottom edges of the square show border
ownership modulation. This may be an artifact of our mod-
eling procedure, where the edges of our figure are defined
by contour elements instead of texture discontinuities. For
the noise stimuli (bottom row), border ownership is still
assigned correctly along the edge of the square, but the noise
results in occasional nonzero border-ownership cell activ-
ity at other points in the image as well. For both types of
stimuli, grouping cell activity is still centered on the square,
and contour grouping neurons still highlight the edges of the
squares, but there is also noticeably increased noise.

3.4 Interaction between border ownership assignment
and attention

Although border ownership selectivity emerges indepen-
dently of attention (Qiu et al. 2007), attention may help to
facilitate figure-ground segregation in the presence of noise.
For the square figure with noise, we found that in our model,
attention increases the responses of neurons along the edge
of the figure (unpaired t-test, p = 2.32 × 10−59) and

suppresses those in the center (unpaired t-test, p = 3.42 ×
10−8). In addition, attention increases border-ownership
modulation along the edge of the figure (unpaired t-test,
p = 1.37 × 10−143) and increases the activity of object
grouping neurons in the center of the figure (unpaired t-test,
p = 1.53×−239). All effects were small but highly signifi-
cant, and were based on the differences in summed activity
of neurons along the edge or center of the figure over a total
of 100 simulations. Figure 8 shows the average neural activ-
ity in the different populations of neurons in our model, with
and without the effect of attention.

Attention must also operate in cluttered environments
where multiple objects may be present. Qiu et al. (2007)
studied border-ownership responses in area V2 when two
overlapping squares were presented and attention was
directed either to the foreground or background square.
Mihalas et al. (2011), using a model closely related to ours
but without Gc cells, reproduced the experimental finding
that border-ownership modulation was strong when atten-
tion was on the foreground figure but weak when attention
was on the background figure. Our model reproduces this
finding, see Supplementary Fig. S3. The quantitative effect
on border-ownership selectivity is shown in Fig. 9. Our
model also reproduces the experimental finding that border-
ownership modulation is strong when attention is on the
foreground figure (Fig. 9c, “Front attended”) and weak
when attention is on the background figure (Fig. 9c, “Back
attended”).
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Fig. 7 Figure-ground segregation of a square object with aligned con-
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(Go) and the contour grouping activity (Gc). Activities are normalized
within each map, and warmer colors indicate higher activity (see color
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These results demonstrate that the object and contour
grouping neurons are able to assist with early level segmen-
tation of objects in noise and clutter. Previous experimental
studies have only tested squares without noise, although the
effect of figures defined by broken contours has been inves-
tigated before Zhang and von der Heydt (2010). Our results
predict that border ownership assignment and grouping are
robust even in the presence of noise, clutter, and interrup-
tions in figure borders, and that attention may further aid
this process.

4 Discussion

In this study, we use computational models to elucidate the
role of attention and feedback in contour and object pro-
cessing. Different from many models that are tailor-made to
reproduce one set of experimental results, we demanded that
our model explain data from at least three sets of experimen-
tal approaches, (1) contour integration, (2) figure-ground

segregation, (3) attention to objects. We hypothesize that
these processes are fundamentally linked in terms of the
larger goal of image understanding. Using the same set
of model parameters, we reproduced several experimental
findings and generated non-trivial predictions.

4.1 Model predictions

Our model predicts that attentional modulation is specific
to the attended contour or object, rather than being defined
purely spatially. This is possible because, in our model,
attention modifies firing rates of grouping cells, rather than
of elementary feature-coding cells. Attending to the contour
increases contour-response d ′ in both V1 and V4, consistent
with experimental results showing increased contour-related
responses after animals had been trained to perform a con-
tour detection task, compared to when they performed a
separate set of tasks in which the contour was behaviorally
irrelevant (Li et al. 2008). We note that Li et al. (2008)
only studied neural responses in V1, while our model makes

a b c d

Fig. 8 Attentional modulation of different neuronal populations aids
figure-ground segregation in the presence of noise. Each panel (a–
d) shows the means and standard deviations of neural activity with
and without added attention over 100 different simulations. a Edge
cell activity along the contour of the object shows enhancement with

attention. b Edge cell activity in the center of the figure shows
suppression with attention. c The BOS signal along the contour of
the object shows enhancement with attention. d Object grouping
cell (Go) activity centered on the object shows enhancement with
attention
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Fig. 9 Quantitative comparison of model performance to neurophys-
iological findings (Qiu et al. 2007) for border-ownership coding of
overlapping figures. a The stimulus configurations used are shown,
with neurons coding right border ownership (black) and left border
ownership (gray) when attention was focused on either foreground
square 1 (front attended) or on background square 2 (back attended).
b The responses of border ownership selective cells recorded in V2

are shown: bars indicate the average firing rate for each stimulus
condition. c Model B cell responses to analogous stimulus conditions.
For both the model and the experiments, border-ownership modulation
was strong when attention was on foreground but weak when attention
was on background. Panels A and B are modified from Figure 3 of Qiu
et al. (2007)

predictions about attention-related changes to contour-
response d ′ in both V1 and V4. We also find that attention
modulates border ownership activity in V2 in an object-
based manner. As a result, our model makes predictions
about neural activity in visual areas V1, V2, and V4 across
different stimuli and tasks.

We predict that the interaction of modulatory feedback
from grouping cells with local inhibition enhances the rep-
resentation of the figure and suppresses the representation
of the background. Indeed, our model produces background
suppression for isolated contours as well as for figures
embedded in noise. We note that this prediction is different
from what others have observed in texture-defined figures
(Lamme 1995; Lee et al. 1998), where there is generally
response enhancement of the center of the figure. This dif-
ference may be due to how the figure is defined, by its
contour in our experiment and by texture in Lamme (1995)
and Lee et al. (1998). It is possible that if feedback from
object grouping neurons is to the center of the figure instead
of its edges, we may observe enhancement of activity at the
center of the figure. Understanding how border-ownership
assignment interacts with filling-in of surfaces is a future
direction of research. Furthermore we predict that atten-
tion, in addition to enhancing the figure in an object-based
manner, also helps to suppress noise in the background.

We also predict that removing feedback from V4 to lower
visual areas reduces neural responses in V1, while having
a smaller effect in V4. The activity of V4 neurons is also
affected due to the recurrency of the network model. This
could be tested experimentally by the same contour detec-
tion task used by Chen et al. (2014), and measuring the
contour-response d ′ in V1 and V4 from reversible inac-
tivation of feedback connections. Although complete and
selective deactivation of V4 feedback to areas V1 and/or

V2 is technically challenging, there have been attempts to
study the effect of this type of feedback either through
extra-striate lesions (Supèr and Lamme 2007) or reversible
inactivation (Jansen-Amorim et al. 2012). Anesthesia pre-
sumably also decreases top-down influences, and indeed
reduces contour-related V1 responses (Li et al. 2008) and
figure-ground segregation (Lamme et al. 1998).

4.2 Comparison to other models

Many have argued that contour integration and figure-
ground segregation are largely local phenomena that rely
on lateral connections (Grossberg 1994, 1997; Li 1998;
Zhaoping 2005; Piëch et al. 2013). While some of these
models include a role for top-down influences (Li 1998;
Piëch et al. 2013), they do not offer a specific mecha-
nism by which higher visual areas representing object-level
information selectively feed back to lower visual areas
containing feature-level information about the object. In
contrast, our model is explicit in that feedback connections
from higher visual areas modulate the responses of early
feature-selective neurons involved in the related processes
of contour integration and figure-ground segregation. Our
model thus is a member of a broad class of theoretical mod-
els that achieve image understanding through bottom-up and
top-down recurrent processing (Ullman 1984; Hochstein
and Ahissar 2002; Roelfsema 2006; Epshtein et al. 2008).
In comparison to similar models, our model is able to
reproduce experimental findings from two traditionally sep-
arate fields of study– contour integration and figure-ground
assignment. Importantly, using the same set of network
parameters, the grouping cells in our model are able to rep-
resent proto-objects (both contours and extended objects)
and provide a perceptual organization of the scene. We
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show that this perceptual organization is critical for interfac-
ing with top-down attention, and that it provides a general
theoretical framework for understanding how feedback con-
nections and an hierarchy of visual areas can be used to
group together the features of an object.

4.3 Roles of V1 and V4 in visual processing

While V1 neurons have small RFs that accurately code for
orientation, V1 also shows strong background inhibition off
the contour. This property allows V1 neurons to enhance
contours and suppress noise in the image at a high spatial
resolution. V4 neurons, on the other hand, have large RFs
that integrate local feature information over large areas of
visual space and provide a coarse, proto-object representa-
tion of contours and objects. Feedback from V4 can then be
refined by the lateral connections present within early visual
areas, which aids in the enhancement of the figure and its
edges in the image.

Even when V1 neurons receive no feedback from V4,
there is an increase in contour-response d ′ with contour
length (Fig. 5). This contour facilitation is solely due to the
excitatory lateral connections present in V1, and is weaker
without feedback. As a result, feedback from V4 may not
be necessary for contour facilitation, but it interacts with
local lateral connections in a push-pull manner – neurons
along the contour are enhanced, while elements on the back-
ground are suppressed. Not surprisingly, removing this type
of feedback has a larger effect on V1 neurons compared
to V4 neurons, although the activity of V4 neurons is also
affected due to the recurrency of the network model.

4.4 Contour and object grouping neurons

Contour grouping neurons have direct experimental support
through the recent neurophysiological experiments pub-
lished by Chen et al. (2014). In our model, relatively few
numbers of grouping neurons (both contour and object) are
required. The spatial resolution of the grouping process does
not need to be very high, as grouping cells only provide a
coarse template of the contours and objects present in the
scene. Assuming that the activity of grouping cells repre-
sents proto-objects with a similar resolution as attention, the
total number of grouping cells may be less than 2% of the
number of border-ownership cells (Craft et al. 2007). In the
contour integration experiments (Chen et al. 2014), many
V4 neurons were found to respond to straight, elongated
contours, while in our model, only a subset of the grouping
neurons are selective for contours. One possible explanation
for this is overtraining – monkeys performed the task a very
large number of times each day for many months, and neu-
ral plasticity may have generated many V4 neurons which
respond to contours.

There is no unambiguous neurophysiological evidence
for object grouping neurons yet, although previous stud-
ies have found neurons in V4 that respond to contour
segments of various curvatures (Pasupathy and Connor
2002; Brincat and Connor 2004). The receptive fields
of these neurons are similar to those proposed by Craft
et al. (2007). Other types of grouping neurons may also
exist, including those that respond to gratings (Hegdé and
Van Essen 2007), illusory surfaces (Cox et al. 2013), or
3D surfaces (He and Nakayama 1995; Hu et al. 2015).
We do not attempt to model the whole array of group-
ing neurons that may exist, but only those necessary for
reproducing the neurophysiological experiments referred to
here.

In our model, orientation-independent attentional input
to contour grouping cells was used to enhance neural
responses to a contour at a given location. We note that
this form of attention is analogous to the size- and location
tolerant attentional selection process proposed by Mihalas
et al. (2011). The local circuitry of their model was able to
sharpen a relatively broad and nonspecific attentional input
to match the size and location of a figure in the visual scene.
Similarly, the local circuitry of our model transforms the
orientation-independent attentional input such that it only
enhances the contour of the correct orientation. We note that
attention also has a suppressive effect in our model, essen-
tially inhibiting unattended objects and locations. There is
physiological support for this mechanism (Wegener et al.
2004; Hopf et al. 2006; Sundberg et al. 2009; Tsotsos
2011). Furthermore, previous results show suppression of
border-ownership activity along the shared edge of overlap-
ping squares when the back square was attended, but not
the front square (Qiu et al. 2007). Finally, psychophysi-
cal experiments demonstrate an “object superiority effect,”
where reaction times are fastest when attention is directed
to targets that are part of the cued object, and slowest when
targets are outside of an object (Egly et al. 1994; Kimchi
et al. 2007).

Complementarily, feature-based attention acts broadly
across the visual scene and increases the responses of all
components that share similar feature attributes (e.g. color,
orientation, or direction of movement) with the attended
component (Motter 1994; Treue and Martinez Trujillo
1999). Orientation-specific forms of attention can enhance
neural responses in V1 and V4, but do not significantly alter
tuning curves or selectivity (McAdams and Maunsell 1999).
Our model may be able to reproduce similar results by
essentially changing the form of the attentional input to be
orientation-specific, i.e. top-down attention targets a single
population of contour grouping neurons with the same ori-
entation preference. We expect that both object-based and
feature-based forms of attention exist and can be flexibly
used for different tasks.
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4.5 Scope and limitations of the model

Our model seeks to reproduce two different sets of experi-
mental results, while making testable predictions for future
experiments. We only included one scale of grouping neu-
rons for simplicity, although multiple scales of grouping
neurons are needed to account for the diversity in the scale
of objects in the real world. Our model also assigns dis-
tinct roles to the different visual areas, edge processing
in V1, border ownership assignment in V2, and grouping
of contours and objects in V4. However, the physiological
properties of neurons in early visual areas have not been
fully characterized, and neurons in these different areas may
have additional ranges of selectivity than the ones we assign
them in our model. Finally, our model operates on artifi-
cial images composed of simple shapes such as contours
or square figures. In order to truly understand grouping
mechanisms in natural vision, our model must also be able
to operate on natural images as input, where the number
of potential objects and features are much richer. We are
currently working on the construction of such a model.
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