
Bayesian Integrate and Shift (BIAS) Model:

Incorporating Deep Learning Features for Unsupervised

Learning and Single-Example Learning of Object Parts

Brian Hu

Johns Hopkins University, Baltimore MD 21218

Abstract

During visual perception of complex objects, humans shift their gaze to dif-
ferent salient regions of a particular object in order to gain more information
about that object. For example, when looking at a face, humans will often
fixate on the eyes, the nose, and the mouth, which are particularly informa-
tive regions for recognizing a face. The Bayesian Integrate and Shift (BIAS)
model is a biologically inspired model for learning visual object categories
that is modeled after the process of human visual perception.

Previous works have demonstrated the ability of the BIAS model to learn
new object categories from only a few training examples by integrating in-
formation from within and across different fixations. One limitation of these
previous models is the requirement for supervised learning of object parts us-
ing regions selected by a human teacher. In this report, we extend the BIAS
model to include more complex features taken from deep learning along with
unsupervised learning methods and show that we are also able to learn object
parts in an unsupervised manner.

Keywords: Unsupervised Learning, Deep Learning, Object Parts

1. Introduction

The human visual system is unmatched in its ability to learn visual object
categories from only a few examples. This is accomplished starting in early
visual areas through an array of neurons that are selective for specific features
and whose receptive fields (RFs) are spatially organized in a specific way. The
size of RFs near the fixation point are small whereas the size of RFs that cover



more peripheral regions increases with the distance from the fixation point.
Although we perceive the world around us as a continuous stream of high
resolution images, our visual system somehow knows how to “discard” certain
image regions that are not informative (the background) while seamlessly
integrating information from the different regions or parts that make up
objects of interest. If we are not able to recognize an object after a single
fixation, then we often make additional saccades, combine the information
obtained from these different fixations, and as a result improve our perception
of the object.

In contrast to human visual processing, most computer vision systems
process images at a uniform resolution and hence do not require this saccade-
like image exploration. Futhermore, object categories, if learned in a super-
vised way, usually do not contain information about the structure of the
object or object “parts”. Despite significant advances in computer vision in
recent years, many artificial intelligence systems designed for object recogni-
tion (including those resulting from the recent explosion of interest in deep
learning) also require large numbers of training examples (hundreds to thou-
sands or more).

As an alternative to these approaches, the Bayesian Integrate and Shift
(BIAS) model is a biologically-inspired, feature-based model for learning vi-
sual object categories [1, 2]. The model mimics the human visual system
by using an array of RFs for visual processing and integrating information
across RFs and eye movements. In the BIAS model, object categories are
learned by training the system on various points of view of an object in a
“parts-based” manner. In the following sections, we will describe the model
as well as our improvements in making the system able to learn objects parts
in an unsupervised manner.

2. The Model

2.1. Receptive Fields

The RFs in the BIAS model form a fixed grid of concentric rings arranged
with hexagonal packing, and are parameterized by an overlap factor and
scaling factor, which determine the location and size of RFs in the different
rings of the model. There is a central fixation point which is centered on
different points in the image, and the locations of all other RFs are defined
relative to this central RF. Typically, we used models with a total of eight
RFs for each ring, evenly spaced at intervals of π/4 within a ring. We also

2



used between four to five rings, including the central RF. The grid of RFs
can be shifted to different locations in the image, representing saccade-like
shifts in the viewer’s gaze.

2.2. Feature Detectors

In the original BIAS model, each RF is associated with a set of feature
detectors. Traditionally, Gabor filters which serve as edge detectors of various
orientations and sizes were used to model the responses of simple and complex
cells found in early visual cortex. For the initial experiments that used Gabor
filters, a total of four orientations (θ = 0, π/4, π/2, 3π/4) and scales (σ =
2, 4, 6, 8) were used. For each feature detector, we introduce relative position
invariance by taking the max response of each feature detector within a RF.
As a result, each feature detector indicates the maximum filter response over
the entire RF, which allows the feature detectors to be more robust to the
specific location of the feature within the RF. There is also a tradeoff in
RFs further away from the central fixation point, as they have larger sizes
which can tolerate more uncertainty, but as a result, are also less specific.
We introduce the deep learning feature detectors that we used to extend the
model in Section 3.

2.3. Learning and Classification

We represent the feature detector outputs as a mixture of Gaussians, and
during the learning phase, the BIAS model learns the model parameters for
a specific object view or part and of the image background (the means and
variances of the Gaussian distributions) by making random fixations within
the view or background in a number of training examples. We typically used
50-100 training images except for in the last section, where we show we are
also able to do single-example learning (Section 4). We use online update
rules for the mean and variance, as described in [1, 2].

To classify whether a point in a new image belongs to an object view,
the posterior probability of the point belonging to the object view is com-
pared to the posterior probability of the point belonging to the background.
This gives a likelihood ratio, and we set a threshold on this ratio in order
to do the classification. This threshold minimizes the mean error rate at
the threshold equilibrium point where false positives and false negatives are
equal. Again, the exact details about Bayesian inference in the BIAS model
are not discussed here, and we refer the reader to previous work [1, 2].

3



Figure 1: imagenet-vgg-f Layer 1 filters

3. Incorporating Deep Learning Features

3.1. Previous approaches.

Traditionally, a small set of Gabor features (4 orientations, 4 scales) has
been used in a supervised manner to learn the different object categories
(e.g. face, motorbike, etc.) This method required labeled bounding boxes
around the different views or parts of an object. Here, we first relax these
constraints by using a form of weakly-supervised learning, i.e. starting only
with a bounding box around the entire object, we learn in an unsupervised
manner the different views or parts of an object by sampling uniformly from
points within the object. We explain below the features and methods used
to implement this new type of learning.

3.2. Deep learning features.

Deep learning allows for end-to-end (usually supervised) learning of a set
of complex representations of the input data useful for a pre-defined task (e.g.
object categorization). Many pre-trained models are freely available, and
these are often borrowed and re-configured for use in similar tasks. Here, we
use the first layer of convolutional filters from the imagenet-vgg-f model [3].
Figure 1 shows example filters from this first layer.

3.3. General methods.

Our model is implemented in MATLAB. We use the MatConvNet tool-
box [4] for interfacing the BIAS model with deep learning features. In par-
ticular, we used the vl nnconv function for fast and efficient convolution.

4



Training images for each object category (face, motorbike, etc.) were taken
from the Caltech-101 dataset [5]. Unless otherwise noted, we typically used
a training set size of 100 images.

3.4. RF sizes correlate with filter sizes.
In our model, we used a total of five concentric rings, with each ring having

a total of eight RFs (except for the first ring, which only had one RF). As
a result, there were a total of 33 RFs in our model. RFs within subsequent
rings increased in size by a scaling factor of 1.4 and were arranged with a
hexagonal packing structure in order to maintain an overlap of 0.5. The
smallest RF size was 5x5 pixels. In order to maintain scale invariance of
the filters, we re-scaled the deep learning features (originally 11x11 pixels) in
accordance with the scaling factor between rings of RFs. For the larger RFs,
we did not include all scales of features, as the smaller-scaled features are
inherently noisy when pooled over larger RFs. Instead, we discarded more
of the smaller-scaled features as the RF sizes increased.

3.5. Image pre-processing.
For the main results that we show, each input image was first re-scaled to

224x224 pixels, which was the input image size used for training the imagenet-
vgg-f model. We also subtract out the “average” image, which is the average
color image of all input images the network was trained on. Note that we
re-scaled the labeled bounding boxes from the Caltech-101 dataset in order
to account for this new (typically smaller) image size. For these results,
the input to the model was a color image, while for previous BIAS results,
the input to the model was grayscale images. We also test the effect of not
re-scaling the deep learning features to match the RF sizes and using deep
learning features with grayscale images as input.

3.6. Convolution, normalization, and max pooling.
We convolve the layer 1 filters (Figure 1) with the input image. Following

this convolution, we use linear rectification (inputs below zero are set to
zero, all other inputs remain the same). Following this rectification, we
normalize the full set of filter responses (across features and scales) using a
local response normalization operator, similar to the L2 norm. This operation
is performed independently at each spatial location and across features as
follows:

yijk = xijk

(
κ+ α

∑
tεG(k)

x2ijt

)−β
5



(a) Gabor filters (b) Deep learning features

(c) Without re-scaling features (d) Using grayscale images

Figure 2: Unsupervised learning of object parts using the EM algorithm

where κ = 1 × 10−6, α = 1, β = 0.5, and t includes the set of all features
and scales.

We then apply max-pooling within each RF (the size of the window used
is based on the RF size), and concatenate the features from across different
RFs to form a long feature vector, which is used for the subsequent EM
learning, which is described below.

3.7. EM learning of clusters.

We first do dimensionality reduction of the features using PCA and we
choose the number of PCA components based on a variance cutoff of 80%.

6



The MATLAB code used for the EM algorithm is based off of the “EmGm”
package freely available on the MathWorks File Exchange. The EM algorithm
converges if there is either a maximum of 500 iterations or a change in the
log-likelihood from one iteration to the next that is less than a predefined
tolerance (1e-6). Ten initializations of the EM algorithm were performed
(each starting with random assignments), and the model with the highest
log-likehood was chosen as the best model and used for futher analysis. We
did EM clustering with a total of six clusters, where each cluster is assumed
to represent a different object part after learning.

3.8. BIAS results with Gabor features.

We first show previous results from the standard BIAS model learned on
the face category using standard Gabor features (4 orientations, 4 scales).
Fig 2a shows learned cluster labels for the different face parts within a nor-
malized bounding box. For example, the red labels might correspond to the
left side of the face and background, the green labels might correspond to the
right side of the face and background, and the cyan labels might correspond
to the top of the face or forehead. For these results, 50 training images were
used and the smallest RF size was 30x30 pixels. We should also note that
these results were learned on grayscale images.

3.9. BIAS results with deep learning features.

We now show results obtained using the deep learning features. Fig 2b
again shows learned cluster labels for the different face parts within a nor-
malized bounding box. Note that the color labels are arbitrary, so they do
not necessarily match up with those shown in Fig 2a. For these results,
100 training images were used and the smallest RF size was 5x5 pixels. With
these new results, the symmetry of the face, as well as the consistent labeling
of the background as a single cluster becomes much more apparent. How-
ever, we have not done any quantitative analysis of these results or compared
them with previous results.

3.10. Effect of filter rescaling and color.

We also examined the various effects of our image pre-processing routine
on the final results. First, we looked at whether re-scaling the filters with RF
size in our model had an influence on the final results. In Fig 2c, we show the
results of our model when we kept the original size of filters throughout each
RF layer. The model is still able to identify different clusters within the face,

7



Figure 3: Poor results on the airplane class

although the symmetry is not as stark as in our original implementation.
Next, we examined whether we could still perform object category learning
on grayscale images. The original layer 1 deep learning filters operate on
the three separate color channels of the input image. We chose one set of
the layer 1 filters corresponding to the red channel (Fig 1) and applied them
to grayscale images. In Fig 2d, we show the results of our model when
we used grayscale instead of color images. We could not test the effect of
image re-sizing, i.e. using the original image size instead of re-sizing to the
standard 224x224 pixels, as storing filtered outputs at the original image size
was prohibitively expensive in terms of memory (RAM).

3.11. Poor results on other object classes.

We also found that while we obtained relatively good results on the face
class, we obtained much poorer results on other object classes, e.g. airplane.
Fig 3 shows results of training our system on the airplane class. The final
cluster labels are relatively random with no perceivable structure. We believe
that this may be due to the relatively large amount of background that is
included in the labeled bounding boxes of these object classes compared to
the face, which has relatively tight bounding boxes. Because we sample
uniformly from within the bounding box for our EM learning, many of the
background points may be used when they contain no consistent structure.

8



(a) Training image (b) Test image

Figure 4: Single-example learning on an example object view, the right eye of a face.
The model was trained on a single fixation point in the training image (yellow dot), and
then tested on other points in the same object region (green points), same object and
different region (red points), and the background (blue points). Correctly classified points
are shown by the corresponding color, incorrectly classified points are shown in black.

This problem could be addressed by either: 1) looking at other object classes
within the Caltech-101 dataset that have tighter bounding boxes, or 2) using
a dataset that has much tighter segmentations (e.g. piecewise contours)
instead of a rectangular bounding box. One example of such a dataset is the
LabelMe database, although we would also have to take into account size
invariance of the various instances of objects in these other datasets.

4. Single-Example Learning

We also demonstrate the ability of the BIAS model to learn an object
part from a single fixation point using a single training image. Using the
set of deep learning features and the RF structure defined above, we trained
on a single fixation point within an object region and tested on other points
within that object region, other points within the object (but a different
object region), and also the background. We tested on a total of 40 randomly
selected points within each region. We did this both for the same training
image as well as for a new image to test the generalizability of our results.
Our results for two example faces are shown in Figure 4.

Based on these preliminary results, we achieved a classification accuracy
of greater than 90%. Our results show that our model is not biased or

9



overtrained, despite learning from a single example, as we achieve relatively
good performance even on new images. As can be seen in our results, there
are still several points either on the object or on the background (shown as
black dots in Figure 4) that are incorrectly classified as being part of the
trained object region. We are currently investigating if there is a systematic
reason why our system makes these errors and in doing so, hope to gain
better insight into how our model is able to learn from a single example. We
also believe that this insight will allow us to improve our model, and extend
our results to other object classes and use cases. As for future directions
of research, we are also interested in extending our model to be scale- and
rotation-invariant, as well as creating an efficient search algorithm that allows
for object recognition using multiple fixations on different object views.

10



5. References

[1] Predrag Neskovic, Liang Wu, and Leon N Cooper. Learning by in-
tegrating information within and across fixations. In Artificial Neural
Networks–ICANN 2006, pages 488–497. Springer, 2006.

[2] Predrag Neskovic, Ian Sherman, Liang Wu, and Leon N Cooper. Learning
faces with the bias model: On the importance of the sizes and locations
of fixation regions. Neurocomputing, 72:2915–2922, 2009.

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of
the devil in the details: Delving deep into convolutional nets. In British
Machine Vision Conference, 2014.

[4] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for
matlab. 2015.

[5] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual
models from few training examples: An incremental bayesian approach
tested on 101 object categories. Computer Vision and Image Understand-
ing, 106:59–70, 2007.

11


